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Abstract

In 2015, Vladimir Fock proved that the spectral transform, associating to an element of a

dimer cluster integrable system its spectral data, is birational by constructing an inverse map

using theta functions on Jacobians of spectral curves. We provide an alternate construction of

the inverse map that involves only rational functions in the spectral data.
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1 Introduction

The planar dimer model is a classical statistical mechanics model, involving the study of the set
of dimer covers (perfect matchings) of a planar, edge-weighted graph. In the 1960s, Kasteleyn
[Kas61,Kas63] and Temperley and Fisher [TF61] showed how to compute the (weighted) number
of dimer covers of planar graphs using the determinant of a signed adjacency matrix now known as
the Kasteleyn matrix.

In mathematics the dimer model was popularized with the papers [EKLP92a, EKLP92b] on
the “Aztec diamond” and later with results on the local statistics [Ken97], conformal invariance
[Ken00], and limit shapes [CKP01], connections with algebraic geometry [KOS06,KO06], cluster
varieties and integrability [GK13], and string theory [HK05].

While the dimer model can be considered from a purely combinatorial point of view, it also has
a rich integrable structure, first described in [GK13]. The integrable structure on dimers on graphs
on the torus was found to generalize many well-known integrable systems, see for example [FM16]
and [AGR21]. What is especially important is that the related integrable system is of cluster nature,
and this allows one to immediately quantize it, getting a quantum integrable system.

From the point of view of classical mechanics, associated to the dimer model on a bipartite graph
on a torus (or equivalently a periodic bipartite planar graph) is a Poisson variety with a Hamiltonian
integrable system. Underlying this system is an algebraic curve C = {P (z, w) = 0} (called the
spectral curve) and a divisor on this curve–essentially a set of g distinct points {(p1, q1), . . . , (pg, qg)}
on C. This is the spectral data associated to the model. It was shown in [KO06] that the map from
the weighted graph to the spectral data was bijective, from the space of “face weights” (see below)
to the moduli space of genus-g curves and effective degree-g divisors on the open spectral curve
C◦. Subsequently Fock [Foc15] constructed the inverse spectral map (from the spectral data to the
face weights), describing it in terms of theta functions over the spectral curve. The special case of
genus 0 was described earlier in [Ken02,KO06] and an explicit construction in the case of genus 1
was more recently given in [BCdT20]. Positivity of Fock’s inverse map was studied in [BCdT21].
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In the current paper, we show that the inverse map can be given an explicit rational expression
in terms of the divisor points (pi, qi) ∈ C

◦ and the points of C at toric infinity. An exact statement
is given in Theorem 3.10 below.

While Fock’s construction is very natural and interacts nicely with positivity, it involves theta
functions. Our construction gives the inverse map as ratios of certain determinants in the spectral
data and can be explicitly computed using computer algebra. We briefly describe our construction
now. The spectral data is defined via a matrixK = K(z, w) called the Kasteleyn matrix, whose rows
are indexed by white vertices, columns by black vertices, and whose entries are Laurent polynomials
in z and w. Let us consider the adjugate matrix of K:

Q = Q(z, w) =K−1 detK.

The matrix Q is important when studying the probabilistic aspects of the dimer model (on the lift
of the graph on the torus to the plane): the edge occupation variables form a determinantal process
whose kernel is given by the Fourier coefficients of Q/P , as discussed in [KOS06]. In the present
work, we have a different use for Q: finding (a column of) the matrix Q from the spectral data
allows us to reconstruct the face weights and thereby invert the spectral transform.

The points (pi, qi) ∈ C are defined to be the points where a column of Q, corresponding to a
fixed white vertex w, vanishes. We show that entries in the w-column of Q, which are Laurent
polynomials, can be reconstructed from the spectral data by solving a linear system of equations.
Some of the linear equations are easy to describe: for any black vertex b, we have Qbw(pi, qi) = 0
for i = 1, . . . , g, which are g linear equations in the coefficients of the Laurent polynomial Qbw.
However, these equations are usually not sufficient to determine the coefficients of Qbw. We find
additional equations from the vanishing of Qbw at certain points at infinity of the spectral curve C,
and show that these equations determine Qbw uniquely, up to a non-zero constant. We then give
a procedure to reconstruct the weights from the w-column of Q.

A key construction in our approach is the extension of the Kasteleyn matrix K to a map of
vector bundles on a toric stack, for which we make crucial use of the classification of line bundles
on toric stacks and the computation of their cohomology developed in [BH09]. Toric stacks already
appear implicitly in the context of the spectral transform in [KO06] and explicitly [TWZ19].

The article is organized as follows. In Section 2 we review the dimer cluster integrable system
and the spectral transform. In Section 3, we state Theorem 3.1, which is our main result, and
describe the reconstruction procedure. We work out two detailed examples in Section 4. Sections
5, 6 and 7 contain proofs of our results. In Appendix A, we review results from toric geometry. In
Appendix B, we provide explicit combinatorial descriptions for some of our constructions. These
are useful for computations.

Acknowledgments. The work of A.G. was supported by the NSF grants DMS-1900743, DMS-
2153059. Work of R. K. was supported by NSF grant DMS-1940932 and the Simons Foundation
grant 327929. We thank the referee for their careful reading of the manuscript and their numerous
suggestions.

2 Background

For further information about the material in this section see [GK13].
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2.1 Dimer models

Let Γ be a bipartite graph on the torus T ∼= S1 × S1 such that the connected components of the
complement of Γ—the faces—are contractible. We denote by B(Γ) and W (Γ) the black and white
vertices of Γ, by V (Γ) the vertices, and by E(Γ) the edges of Γ. When the graph is clear from
context, we will usually abbreviate these to B,W, V and E.

A dimer model on the torus is a pair (Γ, [wt]), where Γ is a bipartite graph on the torus as above
and [wt] ∈ H1(Γ,C×) (Here and throughout the paper, C× denotes the group of nonzero complex
numbers under multiplication). For a loop L and a cohomology class [wt], we denote by [wt]([L])
the pairing between the cohomology and the homology. We orient edges from their black vertex to
their white vertex. The cohomology class [wt] can be represented by a cocycle wt which, using this
orientation, can be identified with a C×−valued function on the edges of Γ called an edge weight.

The edge weight is well-defined modulo multiplication by coboundaries, which are functions on
edges e = bw given by f(w)f(b)−1 for functions f : V (Γ) → C×. Note that the weight of a loop
is not the product of its edge weights, but the “alternating product” of its edge weights: edges
oriented against the orientation of the loop are multiplied with exponent −1.

A dimer cover or perfect matching m of Γ is a subset of E(Γ) such that each vertex of Γ is
incident to exactly one edge in m. Let M denote the set of dimer covers of Γ. If we fix a reference
dimer cover m0, we get a function

πm0 : M→ H1(T,Z)

m 7→ [m−m0].

Here m−m0 is the 1-chain which assigns 1 to (oriented) edges of m and −1 to (oriented) edges of
m0, so m−m0 is a union of oriented cycles and doubled edges, whose homology class is [m−m0].

The Newton polygon of Γ is the polygon

N(Γ) := Convex-hull(πm0(M)) ⊂ H1(T,R)

defined modulo translation by H1(T,Z). Changing the reference dimer cover from m0 to m′
0 results

in a translation of the polygon by [m0−m′
0], so the Newton polygon does not depend on the choice.

We assume that Γ is such that N(Γ) has interior. This is a nondegeneracy condition on Γ.
(When N has empty interior, the graph Γ is equivalent under certain elementary transformations
to a graph whose lift to R2 is disconnected, that is, has noncontractible faces; such a graph breaks
into essentially one-dimensional components, and there is no integrable system.)

2.2 Zig-zag paths and the Newton polygon

A zig-zag path in Γ is a closed path that turns maximally right at each black vertex and maximally
left at each white vertex. The medial graph of Γ is the graph Γ× that has a vertex ve at the mid-
point of each edge e of Γ and an edge between ve and ve′ whenever e and e′ occur consecutively
around a face of Γ. Note that by construction, each vertex of Γ× has degree 4. A zig-zag path in
Γ corresponds to a cycle in Γ× that goes straight through each degree four vertex, i.e., at every
vertex, the outgoing edge of the cycle is the one that is opposite the incoming one (see Figure 2).
Hereafter, when we say zig-zag path, we mean the corresponding cycle in the medial graph.

Let Γ̃ be the biperiodic graph on the plane given by the lift of Γ to the universal cover of T. The
bipartite graph Γ is said to be minimal if the lift of any zig-zag path does not self-intersect, and
lifts of any two zig-zag paths do not have “parallel bigons”, where by parallel bigon we mean two
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γz

γw

Figure 1: The fundamental rectangle R, along with the cycles γz, γw.

Γ Γ×

Figure 2: A zig-zag path in a graph Γ and the corresponding cycle in the medial graph Γ×.

consecutive intersections where both paths are oriented in the same direction from one to the next.
For a minimal bipartite graph Γ on the torus, the Newton polygon has an alternative description
in terms of the zig-zag paths of Γ. Namely, since Γ is embedded in T, each zig-zag path α has a
non-zero homology class [α] ∈ H1(T,Z). The polygon N(Γ) is the unique convex integral polygon
defined modulo translation in H1(T,Z) whose integral primitive edge vectors in counterclockwise
order around N are given by the vectors [α] for all zig-zag paths α.

Example 2.1. Consider the fundamental domain for the square lattice shown in Figure 1, and let
γz, γw be cycles generating H1(T,Z) as shown there. We will write homology classes in H1(T,Z)
in the basis (γz, γw). There are four zig-zag paths labeled α, β, γ and δ with homology classes
(−1, 1), (−1,−1), (1,−1) and (1, 1) respectively (Figure 3), and therefore the Newton polygon is

Convex-hull{(1, 0), (0, 1), (−1, 0), (0,−1)}.

2.3 The cluster variety assigned to a Newton polygon

For a convex integral polygon N ⊂ H1(T,R) defined modulo translation, consider the family of
minimal bipartite graphs Γ with Newton polygon N(Γ) = N . Any two graphs Γ1,Γ2 in the family
are related by certain elementary transformations ; see Figure 4. An elementary transformation
Γ1 → Γ2 gives rise to a birational map H1(Γ1,C

×) 99K H1(Γ2,C
×). Gluing the tori H1(Γ,C×) by

these maps, we obtain a space XN , called the dimer cluster Poisson variety. It carries a canonical
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αβ

δγ

Figure 3: Zig-zag paths and Newton polygon for the bipartite graph in Figure 1.

←→

spider move

←→

contraction-uncontraction move

Figure 4: The elementary transformations.
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Poisson structure. The Poisson center is generated by the loop weights of the zig-zag paths. The
space XN is the phase space of the cluster integrable system. See details in [GK13].

2.4 Some notation

Let Σ denote the normal fan of N (see Section A.2 and Figures 7 and 10) so that the set of rays
Σ(1) = {ρ} of Σ is in bijection with the set of edges of N . We denote the edge of N whose inward
normal is directed along the ray ρ by Eρ, and the primitive vector along ρ by uρ.

Let M := H1(T,Z)∼= Z2 and M∨ := HomZ(M,Z)∼= Z2 be dual lattices and let 〈∗, ∗〉 : M×M∨ →
Z denote the duality pairing. Let us consider the algebraic torus with lattice of characters M:

T := HomZ(M,C×) ∼= (C×)2.

Let MR (resp. M∨
R) denote M⊗Z R (resp. M∨ ⊗Z R), so that N ⊂ MR and Σ ⊂ M∨

R .
An elementary transformation Γ1 → Γ2 induces a canonical bijection between zig-zag paths in

Γ1 and zig-zag paths in Γ2. Therefore, the set of zig-zag paths is canonically associated with N .
We denote the set of zig-zag paths by Z, and for an edge Eρ of N , we denote by Zρ the set of
zig-zag paths α such that the primitive vector [α] is contained in Eρ.

2.5 The Kasteleyn matrix

Let R be a fundamental rectangle for T, so that T is obtained by gluing together opposite sides of
R. Let γz, γw be the oriented sides of R generating H1(T,Z), as shown in Figure 1. Let z (resp.
w) denote the character χγw (resp. χγz), so the coordinate ring of T is C[z±1, w±1].

Let (∗, ∗)T be the intersection pairing on H1(T,Z). For z, w ∈ C× we multiply edge weights on
edges crossing γz by z±1 and those crossing γw by w±1, with the sign determined by the orientation.
Precisely, we multiply by

φ(e) := z(e,γw)Tw(e,−γz)T , (1)

Here (e, ∗)T := (le, ∗)T is the intersection index with the oriented loop le obtained by concatenating
e = bw with an oriented path contained in R from w to b.

A Kasteleyn sign is a cohomology class [ǫ] ∈ H1(Γ,C×) such that for any loop L in Γ, [ǫ]([L])
is −1 (resp., 1) if the number of edges in L is 0 mod 4 (resp., 2 mod 4). Given edge weights wt
and ǫ representing [wt] and [ǫ] respectively, one defines the Kasteleyn matrix K= K(z, w), whose
columns and rows are parameterized by b ∈ B and w ∈W respectively:

Kw,b =
∑

e∈E incident to b,w

wt(e)ǫ(e)φ(e). (2)

It describes a map of free C[z±1, w±1]-modules, called the Kasteleyn operator:

K : C[z±1, w±1]B → C[z±1, w±1]W , (3)

δb 7−→
∑

w∈W

Kw,bδw. (4)

Theorem 2.2 (Kasteleyn 1963, [Kas63]). Fix a dimer cover m0, and let φ(m0) =
∏

e∈m0
φ(e).

Then,
1

wt(m0)ǫ(m0)φ(m0)
detK =

∑

m∈M

sign([m−m0])[wt]([m−m0])χ
[m−m0],

7



w1

w2

b1

b2

f1f2

f3f4

1

1

X1

−1

−X1X3

Bw Bw

− 1
AX2z

−Az

Figure 5: Shown on the left is a labeling of vertices and faces of Γ, and two cycles a (red) and b
(green) in Γ that generate H1(T,Z). Shown on the right is a cocycle representing [wt], along with
ǫ and φ. The signs are due to ǫ, the z, w due to φ, and other weights are wt.

where sign([m−m0]) ∈ {±1} is a sign that depends only on the homology class [m−m0] and [ǫ].

The characteristic polynomial is the Laurent polynomial

P (z, w) :=
1

wt(m0)ǫ(m0)φ(m0)
detK.

Its vanishing locus C◦ := {P (z, w) = 0} ⊂ (C×)2 is called the (open part of the) spectral curve.
Theorem 2.2 implies that N is the Newton polygon of P (z, w). Although the definition of the
Kasteleyn matrix uses cocycles representing the cohomology classes wt and ǫ, the spectral curve
does not depend on these choices.

Example 2.3. Let a and b be the two cycles in Γ shown on the left of Figure 5 whose projections to
T generate H1(T,Z). Let [wt] ∈ H1(Γ,C×) and let A := [wt]([a]), B := [wt]([b]). For i = 1, 2, 3, let
Xi denote the [wt]([∂fi]), where ∂fi denotes the boundary of the face fi (the weight of the fourth
face is determined by the fact that the product of all face weights is 1). Then (X1, X2, X3, A,B)
generate the coordinate ring of H1(Γ,C×). A cocycle representing [wt] is shown on the right of
Figure 5, along with ǫ and φ. The Kasteleyn matrix and the spectral curve are:

K =

b1 b2( )
1−Az 1− X1X3

Bw w1

−1 +Bw X1 −
1

AX2z
w2

,

P (z, w) =

(
1 +X1 +

1

X2
+X1X3

)
−Bw −

X1X3

Bw
−

1

AX2z
−AX1z. (5)

2.6 The toric surface assigned to a Newton polygon

In this section, we collect some notation regarding toric varieties, and refer the reader to the
Appendices A.1 and A.2 for more details. A convex integral polygon N ⊂ MR determines a

8



compactification XN of the complex torus T called a toric surface, and a divisor DN supported
on the boundary XN − T, so that Laurent polynomials with Newton polygon N extend naturally
to sections of the coherent sheaf OXN

(DN ) (for background on the coherent sheaf associated to a
divisor, see for example [CLS11, Chapter 4]).

Denote by |DN | the projective space of non-zero global sections of the coherent sheaf OXN
(DN ),

considered modulo a multiplicative constant. Assigning to a section its vanishing locus, we see
elements of |DN | as curves in XN whose restrictions to T are defined by Laurent polynomials with
Newton polygon contained in N .

The genus g of the generic curve in |DN | is equal to the number of interior lattice points in
N . Recall that the edges {Eρ} of N are in bijection with the rays {ρ} of Σ. Each edge Eρ of N
determines a projective line Dρ which we call a line at infinity of XN , and

XN − T =
⋃

ρ∈Σ(1)

Dρ.

The divisor DN is given by

DN =
∑

ρ∈Σ(1)

aρDρ, (6)

where aρ ∈ Z are such that

N =
⋂

ρ∈Σ(1)

{m ∈ MR : 〈m,uρ〉 ≥ −aρ}. (7)

The lines Dρ intersect according to the combinatorics of N : precisely, for ρ1, ρ2 ∈ Σ(1), the in-
tersection Dρ1 ∩ Dρ2 is empty if Eρ1 ∩ Eρ2 is empty and a point if Eρ1 ∩ Eρ2 is a vertex of N .
The intersection index of a generic curve in |DN | with the line Dρ is equal to the number |Eρ| of
primitive integral vectors in the edge Eρ. The points of intersection are called points at infinity.
Let C ∈ |DN | denote the compactification of the open spectral curve C◦, i.e., C is the closure of C◦

in XN . C is called the spectral curve.

2.7 Casimirs

Let α be a zig-zag path α = b1 → w1 → b2 → · · · → wd → b1 in Zρ. We define the Casimir Cα by

Cα := (−1)d[ǫ]([α])[wt]([α]).

The Casimirs determine points at infinity of C as follows: since [α] is primitive and 〈uρ, [α]〉 = 0,
we can extend it to a basis (x1, x2) of M with [α] = x1 and 〈x2, uρ〉 = 1. The affine open variety in
XN corresponding to the cone ρ is

Uρ = SpecC[x±1
1 , x2] ∼= C× × C,

and Dρ ∩ Uρ is defined by x2 = 0, and so the character x−1
1 = χ−[α] is a coordinate on the dense

open torus C× = Dρ ∩ Uρ in Dρ. Therefore, the equation

χ−[α](νρ(α)) = Cα, (8)

defines a point νρ(α) in Dρ. In other words, the point is defined as the unique point on the line
at infinity such that the monomial ziwj , where −[α] = (i, j), evaluates to Cα. We will prove later
(see (41)) that these are precisely the points at infinity of C.

9



Example 2.4. Consider the fundamental domain of the square lattice, whose zig-zag paths were
listed in Example 2.1 and Figure 3. The Casimirs are

Cα = −
B

AX1
, Cβ = −

1

ABX2
, Cγ = −

AX1X2X3

B
, Cδ = −

AB

X3
. (9)

Let us denote the normal ray in Σ of a zig-zag path ω by ρ(ω), so uρ(α) = (−1,−1) etc. We choose

x2 = χ(0,−1) so that 〈(0,−1), uρ(α)〉=1. Then we have Uρ(α) = SpecC[x1 = z−1w, x2 = w−1] and
Dρ(α) ⊂ Uρ(α) is given by x2 = 0. In this case, DN = Dρ(α) +Dρ(β) +Dρ(γ) +Dρ(δ) and P (z, w) is
a global section of OXN

(DN ). We trivialize OXN
(DN ) over Uρ(α) as follows:

OXN
(DN )

∣∣
Uρ(α)

= {t ∈ C[z±1, w±1] : div t
∣∣
Uρ(α)

+Dρ(α) ≥ 0} ∼= OUρ(α)

t 7→ tx2

Then making the change of variables z = 1
x1x2

and w = 1
x2
, and multiplying by x2, the portion of

the spectral curve C in Uρ is cut out by

(
1 +X1 +

1

X2
+X1X3

)
x2 −B −

X1X3

B
x2
2 −

x1x
2
2

AX2
−

AX1

x1
,

so that C ∩Dρ(α) is given by

−B −
AX1

x1
= 0.

Therefore, ν(α) is given by z
w = 1

x1
= Cα, which agrees with (8). The table below lists the points

at infinity for each of the zig-zag paths.

Zig-zag path Homology class Basis x1, x2 Point at infinity

α (−1, 1) (−1, 1), (0,−1) x1 = 1
Cα

, x2 = 0

β (−1,−1) (−1,−1), (0,−1) x1 = 1
Cβ

, x2 = 0

γ (1,−1) (1,−1), (0, 1) x1 = 1
Cγ

, x2 = 0

δ (1, 1) (1, 1), (0, 1) x1 = 1
Cδ

, x2 = 0

(10)

2.8 The spectral transform

Our next goal is to define the spectral transform, which plays the key role in this paper. We present
two equivalent definitions of the spectral transform. The first is the original definition of Kenyon
and Okounkov [KO06], and it is the one which we use in computations. However, it depends on
the choice of the distinguished white vertex w. The second is more invariant, and does not require
choosing a distinguished white vertex w.

Recall that for each edge Eρ of N , we have #Zρ = #C ∩Dρ, but there is no canonical bijection
between these sets. We define a parameterization of the points at infinity by zig-zag paths to be a
choice of bijections ν = {νρ}ρ∈Σ(1), where

νρ : Zρ
∼
−→ C ∩Dρ. (11)

10



For a curve C ∈ |DN |, we denote by Div∞(C) the abelian group of divisors on C supported at
the infinity, that is at C ∩DN .

Compactifications of the Kasteleyn operator will play a important role in this paper. The main
ingredient in the construction of these compactifications is a combinatorial object called the discrete
Abel map introduced by Fock [Foc15] that encodes intersections with zig-zag paths. Let Γ be a
minimal bipartite graph in T with Newton polygon N and spectral curve C. The discrete Abel map

d : B ∪W ∪ F → Div∞(C)

assigns to each vertex and face of Γ a divisor at infinity. It is defined uniquely up to a constant by
the requirement that for a path γ from x to y, contained in the fundamental domain R, where x
and y are either vertices or faces of Γ, we have

d(y)− d(x) =
∑

ρ∈Σ(1)

∑

α∈Zρ

(α, γ)Rνρ(α).

Here (α, γ)R is the intersection index in R, i.e., the signed number of intersections of α with γ.
Since we require γ to be contained in R, this is well-defined, independent of the choice of path γ.
Locally, the rule is as follows:

1. If b is a black vertex incident to a face f , and b and f are separated by α ∈ Zρ, then
d(b) = d(f) + νρ(α).

2. If w is a white vertex incident to a face f , and w and f are separated by α ∈ Zρ, then
d(w) = d(f)− νρ(α).

We normalize d, setting the value of d at certain face f0 of Γ to be 0. Then for any black vertex
b, face f , and white vertex w of Γ̃ we have:

deg d(b) = 1, deg d(f) = 0, deg d(w) = −1. (12)

Remark 2.5. Only differences of the form d(y) − d(x) will appear in our constructions later, so
the choice of normalization does not play a role.

Example 2.6. Let us compute the discrete Abel map d for the square lattice in Figure 5. We
normalize d(f1) = 0. Then we have

d(b1) = νρ(γ)(γ), d(b2) = νρ(α)(α), d(w1) = −νρ(β)(β), d(w2) = −νρ(δ)(δ),

where ν is shown in table (10).

Definition 1. A divisor spectral data related to a Newton polygon N is a triple (C, S, ν) where
C ∈ |DN | is a genus g curve on the toric surface XN , S is a degree g effective divisor in C◦, and
ν = {νρ} are parameterizations of the divisors Dρ ∩ C, see (11). Denote by SN the moduli space
parameterizing the divisor spectral data on N . Let us fix a distinguished white vertex w of Γ. Then
there is a rational map (here and in the sequel, 99K means a rational map), called the spectral
transform, defined by Kenyon and Okounkov [KO06],

κΓ,w : XN 99K SN (13)

defined on the dense open subset H1(Γ,C×) of XN by [wt] 7→ (C, S, ν) as follows:
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1. C is the spectral curve.

2. For generic [wt], C is a smooth curve and coker K is the pushforward of a line bundle on C◦.
Let sw be the section of coker K given by the w-entry of the cokernel map. S is defined to
be the divisor of this section. In Corollary 6.3, we show that S has degree g. Then S is the
set of g points in C◦ where the w-column of the adjugate matrix Q = Q(z, w) =K−1detK
vanishes.

3. The parameterization of points at infinity by zig-zag paths ν is defined as follows: νρ(α) is
the point in C ∩Dρ satisfying χ−[α] = Cα (see Section 2.7). We call νρ(α) the point at infinity
associated to α.

Definition 2. A line bundle spectral data related to a Newton polygon N is a triple (C,L, ν)
where C ∈ |DN | is a genus g curve on the toric surface XN , L is a degree g − 1 line bundle on C,
and ν is a parameterization of points at infinity by zig-zag paths. Denote by S ′N the moduli space
parameterizing the line bundle spectral data on N .

The spectral transform is a rational map

κΓ,d : XN 99K S ′N

defined on the dense open subset H1(Γ,C×) of XN by [wt] 7→ (C,L, ν), where:

1. C is the spectral curve.

2. Let K
∣∣
C◦

denote the restriction of the Kasteleyn matrix to C◦. The discrete Abel map d

determines an extension K of K
∣∣
C◦

to a morphism of locally free sheaves on C; see Section 6.

The coherent sheaf L is defined as the cokernel of K. When C is a smooth curve, which
happens for generic [wt], L is a line bundle. The convention deg d(w) = −1 implies that
deg L = g − 1; see Proposition 6.4.

3. The parameterizations of the divisors DN ∩ C are defined by associating to a zig-zag path α
the point at infinity νρ(α).

Since ρ is determined by α, we will use the simpler notation ν(α):= νρ(α) hereafter.
The two types of spectral data are equivalent. Given a degree g effective divisor S, we have

(Proposition 6.4)
L ∼= OC (S + d(w)) . (14)

On the other hand, given a line bundle L and a white vertex w, we can recover S as follows.
Consider the Abel-Jacobi map

Ag : SymgC → Jac(C),

E 7→ L ⊗ OC(E + d(w)).

Then Ag is birational by the Abel-Jacobi theorem [Bea13, Corollary 4.6]. We obtain S = (Ag)−1(OC).

Example 2.7. We compute the spectral transform for our running example of the square lattice.
Let us take the distinguished white vertex to be w = w1.

Q =

w1 w2( )
X1 −

1
AX2z

−1 + X1X3

Bw b1
1−Bw 1−Az b2

. (15)
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Solving Qb1w(p, q) = Qb2w(p, q) = 0, we get

p =
1

AX1X2
, q =

1

B
. (16)

Therefore, the spectral transform is:

κΓ,w : H1(Γ,C×) 99K SN

(X1, X2, X3, A,B) 7→ (C, (p, q), ν),

where C = {P (z, w) = 0} with P (z, w) as is in (5), S = (p, q) is a single point (the genus g = 1
since N in Figure 3 has one interior lattice point) and ν is as shown in table (10).

3 The main theorem

Below we introduce functions Vbw on the moduli space SN of spectral data, relying on results in
the remaining Sections 5, 6, 7. They are defined for any pair (b,w) ∈ B ×W of black and white
vertices, and defined as the solution to a system of linear equations Vbw.

The main result of the paper is the following.

Theorem 3.1. For the distinguished white vertex w, the pull-back of the function Vbw under the
spectral map coincides, up to a multiplicative constant, with the bw matrix element Qbw of the
adjugate matrix Q := K−1 detK of the Kasteleyn matrix K. That is,

Qbw = c · κ∗
Γ,w(Vbw), (17)

where c depends on b (and w).

As an application of this result, we get an explicit description of the inverse to the spectral map
(13); see Section 3.2.

The next few sections discuss the structure of the system of linear equations Vbw. Detailed
examples are given in Section 4.

3.1 The matrix Vbw

The system of linear equations Vbw is in the variables (am)m∈Nbw∩M where Nbw ⊂MR is a convex
polygon, introduced in Section 3.1.1.2, and called the small Newton polygon. There is one system
for every pair (b,w) ∈ B ×W . The system Vbw is of the form (matrix)(am) = 0; we also denote
this matrix by Vbw. Therefore, the columns of the matrix Vbw are indexed by the lattice points
Nbw ∩M. By Corollary 5.3, the polygon Nbw is the Newton polygon of the Laurent polynomial
Qbw.

The equations in Vbw, i.e., the rows of the matrix Vbw are defined in Section 3.1.2. There are
two types:

1. There is a row for each of the points (p1, q1), . . . , (pg, qg) of the divisor S on the spectral curve.
The entry of the row in column m ∈ Nbw ∩M is χm(pi, qi).

2. The remaining rows correspond to certain zig-zag paths α. The entries in the row correspond-
ing to α are certain monomials in Cα.

Let us proceed to the precise definition of the matrix Vbw.
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3.1.1 Columns of the matrix Vbw

We now describe the small Newton polygons, whose lattice points correspond to columns of Vbw.

3.1.1.1 Rational Abel map D. Recall the set {Dρ} of lines at infinity of the toric surface XN .

Consider the Q-vector space DivQT(XN ) of Q-divisors at infinity, defined as the Q-vector space with
a basis given by the divisors Dρ:

DivQT(XN ) :=
⊕

ρ∈Σ(1)

QDρ.

We define a rational Abel map
D : V → DivQT(XN )

which assigns to each vertex v of the graph Γ a Q-divisor at infinity D(v) as follows:

1. Normalize D(w) = 0. As in the case of d, the choice of normalization plays no role, and we
can replace 0 with any Q-divisor.

2. For any path γ contained in R from v1 to v2,

D(v2)−D(v1) =
∑

ρ∈Σ(1)

∑

α∈Zρ

(α, γ)R
|Eρ|

Dρ,

where (·, ·)R is the intersection index in R, i.e., the signed number of intersections of α with γ.

The following lemma follows from definitions.

Lemma 3.2. Let α, β be the zig-zag paths through e = bw, with α ∈ Zσ, β ∈ Zρ. Then, we have

D(w)−D(b) = −
1

|Eσ|
Dσ −

1

|Eρ|
Dρ − div φ(e) (18)

where φ(e) is the character defined in (1) and div φ(e) denotes its (Weil) divisor as in (48).

3.1.1.2 Small Newton polygons. Recall the divisor DN at infinity of XN , see (6). Given an
edge e = bw, we define a Q-divisor at infinity

Ybw := DN −D(w) +D(b)−
∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ. (19)

Here the double sum is over all zig-zag paths α passing through b and |Eρ| denotes the number
of integral primitive vectors in Eρ as in Section 2.6. We define bρ ∈ Q as the multiplicities of the
projective lines at infinity Dρ in the divisor Ybw:

Ybw =
∑

ρ∈Σ(1)

bρDρ. (20)
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Figure 6: The two small polygons in Example 3.4. The big black dot denotes the origin, while the
other black dots are integral points.

Definition 3.3. The small Newton polygon Nbw is the polygon defined by the formula

Nbw =
⋂

ρ∈Σ(1)

{m ∈MR : 〈m,uρ〉 ≥ −bρ}. (21)

There is a canonical bijection between divisorsD in DivQT(XN ) and convex polygons P with rational
intercepts (see Proposition A.3 for its importance in toric geometry):

D =
∑

ρ∈Σ(1)

aρDρ ←→ P =
⋂

ρ∈Σ(1)

{m ∈MR : 〈m,uρ〉 ≥ −aρ}, aρ ∈ Q. (22)

Therefore, Nbw is the polygon associated to the divisor Ybw in (22).

The polygon Nbw may not be integral. We will consider only integral points in it. The convex
hull of the integral points in Nbw contains the Newton polygon of Qbw (Corollary 5.3).

Example 3.4. We compute the small polygons for the square lattice in Figure 5. Recall that we
chose w = w1. Since there is only one zig-zag path in each homology direction, the rational Abel
map D is obtained from d by replacing the point at infinity with the corresponding line at infinity,
so from Example 2.6, we have

D(b1) = Dρ(γ), D(b2) = Dρ(α), D(w1) = −Dρ(β), D(w2) = −Dρ(δ).

We have DN = Dρ(α) +Dρ(β) +Dρ(γ) +Dρ(δ), using which we compute

Yb1w1 = (Dρ(α) +Dρ(β) +Dρ(γ) +Dρ(δ))− (−Dρ(β)) +Dρ(γ) − (Dρ(α) +Dρ(β) +Dρ(γ) +Dρ(δ))

= Dρ(β) +Dρ(γ),

Yb2w1 = (Dρ(α) +Dρ(β) +Dρ(γ) +Dρ(δ))− (−Dρ(β)) +Dρ(α) − (Dρ(α) +Dρ(β) +Dρ(γ) +Dρ(δ))

= Dρ(α) +Dρ(β).

Therefore,

Nb1w1 = {−i− j ≥ 0} ∩ {i− j ≥ −1} ∩ {i+ j ≥ −1} ∩ {−i+ j ≥ 0},

Nb2w1 = {−i− j ≥ −1} ∩ {i− j ≥ −1} ∩ {i+ j ≥ 0} ∩ {−i+ j ≥ 0},

see Figure 6. Note that the convex hulls of the lattice points are the Newton polygons of Qb1w1

and Qb2w1 in (15).

3.1.2 Rows of the matrix Vbw

Recall that the variables in Vbw are (am)m∈Nbw∩M. We identify a Laurent polynomial F =∑
m∈M bmχm with its vector of coefficients (bm)m∈M. The equations in Vbw are of two types:
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1. For each 1 ≤ i ≤ g, we have the linear equations
∑

m∈Nbw∩M

amχm(pi, qi) = 0, (23)

so the entry of the corresponding row of Vbw in column m is χm(pi, qi).

2. Recall the notation ⌊x⌋ for the largest integer n such that n ≤ x.

Given a Q-divisor D =
∑

ρ∈Σ(1) bρDρ, we define a divisor with integral coefficients

⌊D⌋ :=
∑

ρ∈Σ(1)

⌊bρ⌋Dρ.

Recall the divisor Ybw in (19). For a divisor D at infinity, let D
∣∣
C
denote the divisor cor-

responding to the intersection of D with C. Precisely, if D =
∑

ρ∈Σ(1) aρDρ, then D
∣∣
C
:=∑

ρ∈Σ(1) aρ
∑

α∈Zρ
ν(α). We have a linear equation for every zig-zag path α such that ν(α)

appears in

−DN

∣∣
C
+ d(w)− d(b) +

∑

α∈Z

ν(α) + ⌊Ybw⌋
∣∣
C
. (24)

Suppose α ∈ Zρ is a zig-zag path that contributes an equation. We extend [α] to a basis
(x1, x2) of M, where x1 := [α] and 〈x2, uρ〉 = 1, so that for any m ∈M, we can write

χm = xbm
1 xcm

2 , bm, cm ∈ Z.

Let Nρ
bw be the set of lattice points in Nbw closest to the edge Eρ of N i.e., the set of points

in Nbw that minimize the functional 〈∗, uρ〉. Then the equation associated with α is
∑

m∈Nρ
bw∩M

amC−bm
α = 0. (25)

So the entry in column m ∈ Nρ
bw ∩M is the monomial C−bm

α , and the entries in the other
columns are 0. Choosing a different basis vector x2 leads to the same equation multiplied by
a monomial in Cα.

Remark 3.5. When all the sides of the Newton polygon are primitive, we call the Newton polygon
simple. In this case, we have [Ybw] = Ybw and d(w)−d(b) = (D(w) −D(b))

∣∣
C
. Then Formula (24)

simplifies considerably to ∑

α∈Z:b/∈α

ν(α). (26)

So for a simple Newton polygon the Casimir rows of the matrix Vbw, i.e., the rows providing
equations (25), are parameterized by the zig-zag paths α which do not contain the vertex b.

3.1.3 The functions Vbw

The number of rows of Vbw is at least as large as the number of columns minus one, but not
necessarily equal. However, Proposition 7.3 shows that there is a unique solution to Vbw up to a
multiplicative constant. Therefore,

Vbw :=
∑

m∈Nbw∩M

amχm, (27)
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is uniquely defined up to a multiplicative constant (where (am)m∈Nbw∩M is a solution to Vbw). Only
ratios of the values of these functions that are independent of the multiplicative constant appear in
the inverse map, see Section 3.2.

Remark 3.6. When the equations in Vbw are linearly independent (so there is exactly one less
equation than the number of variables), we can prepend to Vbw the equation

∑
m∈Nbw∩M amχm to

get a square matrix, which we denote by V
χ
bw. Then the function Vbw is the determinant:

Vbw = det Vχ
bw.

Indeed, given an (n − 1) × n matrix (aij), the system of linear equations
∑n

j=1 aijxj = 0 has a
solution given by the signed maximal minors Aj of the matrix A:

xj = (−1)jAj .

Here Aj is the determinant of the matrix obtained by deleting the j-th column of A. Therefore,
the determinant of the augmented matrix V

χ
bw recovers the expression Vbw in (27).

Example 3.7. We compute the linear system of equations Vbw for the square lattice in Figure 5
with w = w1. Since both black vertices are contained in every zig-zag path, the formula (26) is 0,
so there are no equations of type 2 in Vbw for b ∈ B. Therefore,

Vb1w =
(
1 p−1

)
, Vb2w =

(
1 q

)
.

By Remark 3.6, we get

Vb1w =

∣∣∣∣
1 z−1

1 p−1

∣∣∣∣ , Vb2w =

∣∣∣∣
1 w
1 q

∣∣∣∣ . (28)

Using (16), we have

κ∗
Γ,w(Vb1w) = AX1X2 −

1

z
= AX2Qb1w,

κ∗
Γ,w(Vb2w) =

1

B
− w =

1

B
Qb2w,

verifying the conclusion of Theorem 3.1.

3.2 Reconstructing weights via functions Vbw.

Take a white vertex w and a zig-zag path α containing w. The pair (w, α) determines a wedge

W := b
e
−→ w

e′
−→ b′, where w is a white vertex incident to the vertices b, b′ such that bwb′ is a part

of α. Recall φ(e) from (1), and the Kasteleyn sign ǫ(e). We assign to this wedge the ratio

rW := −
ǫ(e′)φ(e′)Vb′w

ǫ(e)φ(e)Vbw
(ν(α)). (29)

Note that we use the distinguished white vertex w in the expression rather than w. The expression
is in fact independent of w, as we will see in the proof of Theorem 3.10 below.
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Remark 3.8. The ratio on the right is a rational function on the curve. We evaluate the ratio at
the point at infinity of the spectral curve ν(α) corresponding to the zig-zag path α, see (11). To
do this, we first extend [α] to a basis (x1, x2) of M with [α] = x1 and 〈x2, uρ〉 = 1 , as explained
in Section 2.7. Then ν(α) is given by 1

x1
= Cα, x2 = 0. The numerator and denominator in (29)

vanish to the same order in x2 by Corollary 6.2 below, so after factoring out and canceling the
highest power of x2 in the numerator and denominator, we can evaluate at x1 = 1

Cα
, x2 = 0 to get

a well-defined number.

Let L = b1 → w1 → b2 → · · · → bℓ = b1 be an oriented loop on Γ. It is a concatenation of
wedges Wi := bi−1wibi, i = 1, . . . , ℓ (with i taking values cyclic modulo ℓ) provided by the white
vertices. Denote by αi the zig-zag path assigned to the wedge Wi. We define a cohomology class
[ω] by

[ω]([L]) :=

ℓ∏

i=1

rWi
. (30)

Lemma 3.9. The product (30) does not depend on the ambiguities of the multiplicative constants
in the involved functions Vbw.

Proof. For each black vertex bi in L, Vbiw appears twice in (30), once each in the numerator and
denominator, and so the multiplicative constants cancel out.

Theorem 3.10. The cohomology classes [wt] and κ∗
Γ,w[ω] are equal.

Proof. Let b
e
−→ w

e′
−→ b′ be a wedge with zig-zag path α ∈ Zρ. The restriction of the characteristic

polynomial P (z, w)
∣∣
Dρ

is the partition function of those dimers whose homology class in N lies on

Eρ. From the explicit construction of external dimers in [GK13] (that is, dimers whose homology
classes are in ∂N), we have that each dimer with homology class in Eρ uses exactly one of the edges
e or e′. Since Qbw(z, w) is the partition function of dimers with the vertices b,w removed, we have

P
∣∣
Dρ

= wt(e)ǫ(e)φ(e)Qbw

∣∣
Dρ

+ wt(e′)ǫ(e′)φ(e′)Qb′w

∣∣
Dρ

.

Since ν(α) is on the spectral curve, P (ν(α)) = 0, from which we get

wt(e)

wt(e′)
= −

ǫ(e′)φ(e′)Qb′w

ǫ(e)φ(e)Qbw
(ν(α)). (31)

We have corank(K) = 1 at smooth points of C. Note that KQ
∣∣
C
= 0. Therefore, for generic wt,

since C is smooth, Q is a rank 1 matrix given by

Q = kerK∗ ⊗ cokerK.

This implies that
Qbw

Qb′w
(ν(α)) =

Qbw

Qb′w

(ν(α)).

Example 3.11. Consider the cycle a in Figure 5 given by the red horizontal path. We write it as the
concatenation of the two wedges W1 and W2 represented by (w1, δ) and (w1, γ) respectively. From
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Table (10), we know that in the basis x1 = zw, x2 = w, the point ν(δ) is given by x1 = 1
Cδ

, x2 = 0.

Using (28), and making the substitution z = x1

x2
, w = x2, we get

rW1 = −
−1 · w−1 · Vb2w

−1 · z · Vb1w

(ν(δ))

= −
1

zw

q − w

p−1 − z−1
(ν(δ))

=
−(q − x2)

x1p−1 − x2

(
1

Cδ
, 0

)

= −pqCδ.

Similarly, from table (10) we know that in the basis x1 = z
w , x2 = w, the point ν(γ) is given by

x1 = 1
Cγ

, x2 = 0. Using (28), and making the substitution z = x1x2, w = x2, we get

rW2 = −
1 · 1 · Vb1w

−1 · w−1 · Vb2w

(ν(γ))

= w
p−1 − z−1

q − w
(ν(γ))

= x2

p−1 − 1
x1x2

q − x2

(
1

Cγ
, 0

)

= −
Cγ

q
.

Therefore, [ω]([a]) = pCγCδ, and using (9) and (16), we have

κ∗
Γ,w[ω]([a]) =

(
1

AX1X2

)
·

(
−
AX1X2X3

B

)
·

(
−
AB

X3

)

= A.

4 Examples

In this section, we work out two detailed examples.

4.1 Primitive genus 2 example

Consider the hexagonal graph Γ with Newton polygon N and normal fan Σ as shown in Figure 7.
We label the vertices of Γ as in Figure 8. We label the zig-zag paths by α, β, γ, and denote the ray
of Σ dual to τ ∈ {α, β, γ} by στ .

We can take Xi = [wt]([∂fi]), i = 1, . . . , 4, and A = [wt]([a]), B = [wt]([b]) as coordinates on
H1(Γ,C) (see Figure 8).

The Casimirs are

Cα = −
B2X1X2X4

A
, Cβ = −

X3

AB3X2
1X4

, Cγ =
A2BX1

X2X3
. (32)
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[γ]

[α]
[β]

N

σβ
σα

σγ

Σ

Figure 7: A hexagonal graph, its Newton polygon N and normal fan Σ, with zig-zag paths and rays
labeled.

b1
w = w1

b2w2
w3

w4
b3 w5

b4 b5

1
X2

X3

1
ABX1zw

Az

X1X4Bw Bw

b

a

f1 f2 f3 f4

f5

Figure 8: Labeling of the vertices and faces of Γ, a cocycle representing [wt] and φ, where Xi =
[wt]([∂fi]), A = [wt]([a]), B = [wt](b), and a and b are the red and green cycles respectively. The
Kasteleyn sign ǫ is 1 for all edges. If no weight or φ is indicated for an edge, it means that it is 1.
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Nb1,w Nb2,w

Nb3,w

Nb4,w Nb5,w

Figure 9: The small polygons for the hexagonal graph.

The Kasteleyn matrix is

K =

b1 b2 b3 b4 b5





1 0 1 0 Az w1
1
X2

X3 0 1 0 w2

0 1 1
ABX1zw

0 1 w3

X1X4Bw 0 1 1 0 w4

0 Bw 0 1 1 w5

Let P (z, w) = detK and C = {P (z, w) = 0}. The spectral transform is κΓ,w = (C, S, ν) ∈ SN ,
where since the interior of N contains two lattice points, the divisor S = (p1, q1) + (p2, q2) is a sum
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of two points, where

p1 = −

√
(−BX1X2X3X4 −BX1X2X4 −B)2 − 4B2X1X2X4 +BX1X2X3X4 −BX1X2X4 + B

2ABX1
,

q1 =
−
√
(−BX1X2X3X4 −BX1X2X4 −B)2 − 4B2X1X2X4 +BX1X2X3X4 +BX1X2X4 + B

2B2X1X2X4
,

p2 = −
−
√
(−BX1X2X3X4 −BX1X2X4 −B)2 − 4B2X1X2X4 +BX1X2X3X4 −BX1X2X4 +B

2ABX1
,

q2 =

√
(−BX1X2X3X4 −BX1X2X4 −B)2 − 4B2X1X2X4 +BX1X2X3X4 +BX1X2X4 +B

2B2X1X2X4
.

(33)

The points at infinity are given by the following table:

Zig-zag path Homology class Basis x1, x2 Point at infinity

α (−1, 2) (−1, 2), (0,−1) x1 = 1
Cα

, x2 = 0

β (−1,−3) (−1,−3), (0,−1) x1 = 1
Cβ

, x2 = 0

γ (2, 1) (2, 1), (−1, 0) x1 = 1
Cγ

, x2 = 0

(34)

The discrete Abel map D is given by

D(w) = 0, D(b1) = Dβ +Dγ , D(b2) = −Dα + 2Dβ +Dγ ,

D(b3) = Dα +Dβ, D(b4) = 2Dβ, D(b5) = −Dα + 3Dβ,

and DN = 2Dα+2Dβ+Dγ . Since D(w) = 0 and every black vertex b is contained in every zig-zag
path, we have

Ybw = 2Dα + 2Dβ +Dγ +D(b)−Dα −Dβ −Dγ

= D(b) +Dα +Dβ.

Using this, we compute

Yb1w = Dα + 2Dβ +Dγ , Yb2w = 3Dβ +Dγ , Yb3w = 2Dα + 2Dβ,

Yb4w = Dα + 3Dβ, Yb5w = 4Dβ.

The small polygons are shown in Figure 9. Since the Newton polygon N is primitive, we are in the
setting of Remark 3.5. Every zig-zag path contains every black vertex, so the expression (26) is 0.
Therefore, there are no equations of type 2 in the linear system Vbw for any black vertex b. Since
g = 2, we have two equations of type 1 for every black vertex b. Moreover, we note that each of
the small polygons in Figure 9 contains exactly three lattice points, so by Remark 3.6, we get

Vb1w =

∣∣∣∣∣∣

1 w z−1w−1

1 q1 p−1
1 q−1

1

1 q2 p−1
2 q−1

2

∣∣∣∣∣∣
, Vb2w =

∣∣∣∣∣∣

1 z−1 z−1w−1

1 p−1
1 p−1

1 q−1
1

1 p−1
2 p−1

2 q−1
2

∣∣∣∣∣∣
, Vb3w =

∣∣∣∣∣∣

1 w w2

1 q1 q21
1 q2 q22

∣∣∣∣∣∣
,

Vb4w =

∣∣∣∣∣∣

1 w z−1

1 q1 p−1
1

1 q2 p−1
2

∣∣∣∣∣∣
, Vb5w =

∣∣∣∣∣∣

1 z−1w z−1

1 p−1
1 q1 p−1

1

1 p−1
2 q2 p−1

2

∣∣∣∣∣∣
.
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The boundary of the face f2 is the concatenation of the three wedges W1,W2 and W3 represented
by (w2, α), (w, β) and (w4, γ) respectively. We compute

rW1 = −
Vb1w2

Vb4w2

(ν(α)) = −

∣∣∣∣∣∣

1 w z−1w−1

1 q1 p−1
1 q−1

1

1 q2 p−1
2 q−1

2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 w z−1

1 q1 p−1
1

1 q2 p−1
2

∣∣∣∣∣∣

(ν(α)).

To evaluate at ν(α), as explained in Remark 3.8, we extend [α] = (−1, 2) to the basis (x1, x2) of
M, where x1 = [α] = (−1, 2) and x2 = (0,−1). Then ν(α) is given by x1 = 1

Cα
, x2 = 0. Expressing

z, w in the basis (x1, x2) as z = 1
x1x2

2
, w = 1

x2
, we get

rW1 = −

∣∣∣∣∣∣

1 1
x2

x1x
3
2

1 q1 p−1
1 q−1

1

1 q2 p−1
2 q−1

2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 1
x2

x1x
2
2

1 q1 p−1
1

1 q2 p−1
2

∣∣∣∣∣∣

(
1

Cα
, 0

)
= −

∣∣∣∣∣∣

x2 1 x1x
4
2

1 q1 p−1
1 q−1

1

1 q2 p−1
2 q−1

2

∣∣∣∣∣∣
∣∣∣∣∣∣

x2 1 x1x2
3

1 q1 p−1
1

1 q2 p−1
2

∣∣∣∣∣∣

(
1

Cα
, 0

)
= −

∣∣∣∣∣∣

0 1 0
1 q1 p−1

1 q−1
1

1 q2 p−1
2 q−1

2

∣∣∣∣∣∣
∣∣∣∣∣∣

0 1 0
1 q1 p−1

1

1 q2 p−1
2

∣∣∣∣∣∣

= −
p1q1 − p2q2
q1q2(p1 − p2)

,

where we factored out x2 from the numerator and denominator and then evaluated at (x1, x2) =
( 1
Cα

, 0).

For W2, letting (x1, x2) = ((−1,−3), (0,−1)) we have z =
x3
2

x1
, w = 1

x2
, and ν(β) is given by

x1 = 1
Cβ

, x2 = 0. Therefore, we get

rW2 = −
Vb3w

Vb1w

(ν(β)) = −

∣∣∣∣∣∣

1 w w2

1 q1 q21
1 q2 q22

∣∣∣∣∣∣
∣∣∣∣∣∣

1 w z−1w−1

1 q1 p−1
1 q−1

1

1 q2 p−1
2 q−1

2

∣∣∣∣∣∣

(ν(β)) = −

∣∣∣∣∣∣

1 1
x2

1
x2
2

1 q1 q21
1 q2 q22

∣∣∣∣∣∣
∣∣∣∣∣∣

1 1
x2

x1

x2
2

1 q1 p−1
1 q−1

1

1 q2 p−1
2 q−1

2

∣∣∣∣∣∣

(
1

Cβ
, 0

)
= −

∣∣∣∣∣∣

0 0 1
1 q1 q21
1 q2 q22

∣∣∣∣∣∣
∣∣∣∣∣∣

0 0 1
Cβ

1 q1 p−1
1 q−1

1

1 q2 p−1
2 q−1

2

∣∣∣∣∣∣

= −Cβ .

Finally, for W3, letting (x1, x2) = ((2, 1), (−1, 0)) we have z = 1
x2
, w = x1x

2
2, and ν(γ) is given by
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x1 = 1
Cγ

, x2 = 0. Therefore, we get

rW3 = −
Vb4w

Vb3w

(ν(γ)) = −

∣∣∣∣∣∣

1 w z−1

1 q1 p−1
1

1 q2 p−1
2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 w w2

1 q1 q21
1 q2 q22

∣∣∣∣∣∣

(ν(γ)) = −

∣∣∣∣∣∣

1 x1x
2
2 x2

1 q1 p−1
1

1 q2 p−1
2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 x1x
2
2 x2

1x
4
2

1 q1 q21
1 q2 q22

∣∣∣∣∣∣

(
1

Cγ
, 0

)
= −

∣∣∣∣∣∣

1 0 0
1 q1 p−1

1

1 q2 p−1
2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 0 0
1 q1 q21
1 q2 q22

∣∣∣∣∣∣

=
p1q1 − p2q2

p1p2q1q2(q1 − q2)
.

Putting everything together, we get

X2 = −

∣∣∣∣∣∣

0 1 0
1 q1 p−1

1 q−1
1

1 q2 p−1
2 q−1

2

∣∣∣∣∣∣
∣∣∣∣∣∣

0 1 0
1 q1 p−1

1

1 q2 p−1
2

∣∣∣∣∣∣

∣∣∣∣∣∣

0 0 1
1 q1 q21
1 q2 q22

∣∣∣∣∣∣
∣∣∣∣∣∣

0 0 1
Cβ

1 q1 p−1
1 q−1

1

1 q2 p−1
2 q−1

2

∣∣∣∣∣∣

∣∣∣∣∣∣

1 0 0
1 q1 p−1

1

1 q2 p−1
2

∣∣∣∣∣∣
∣∣∣∣∣∣

1 0 0
1 q1 q21
1 q2 q22

∣∣∣∣∣∣

=
Cβ(p1q1 − p2q2)

2

p1p2q21q
2
2(p1 − p2)(q1 − q2)

,

with similar formulas for X1, X3, X4, A,B. It may be easily verified that these invert the spectral
transform by plugging in the formulas (32) and (33) into the right-hand side and simplifying using
computer algebra.

4.2 Non-primitive example

Consider the square-octagon graph Γ with Newton polygon N and normal fan Σ as shown in Figure
10. We label the vertices of Γ as in Figure 11. We label the rays of Σ by σα, σβ , σγ , σδ and the
two zig-zag paths dual to ray στ by {τ1, τ2}, for τ ∈ {α, β, γ, δ}.

We can take Xi := [wt]([∂fi]), i = 1, . . . , 7, and A := [wt]([a]), B := [wt]([b]) as coordinates on
H1(Γ,C) (see Figure 11). The Casimirs are

Cα1 = X1X3X7B, Cα2 =
BX2X3X4X6X7

X1X5
, Cβ1 =

X2

AX1X5
, Cβ2 =

1

AX7
,

Cγ1 =
X5

BX1X3
, Cγ2 =

X6

B
, Cδ1 =

AX1

X2X6
, Cδ2 =

AX1X5

X2X3X4X6X7
.

Since the Newton polygon N has only one interior lattice point, the divisor S = (p, q) consists of a
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γ1α1

β1

δ1

α2γ2

β2

δ2

N

[α1] + [α2][γ1] + [γ2]

[β1] + [β2]

[δ1] + [δ2]

σγσα

σβ

σδ

Σ

Figure 10: A square-octagon graph, its Newton polygon N and normal fan Σ, with zig-zag paths
and rays labeled.

single point. The Kasteleyn matrix is

K =




1 1 0 Az 0 0 0 0
1 −X7 1 0 0 0 0 0
0 0 1 1 0 0 0 1

Bw

0 0 X1X5

X2X3X4X6X7
−1 0 0 1 0

0 1
X3

0 0 1 1
X5

0 0

BwX1 0 0 0 1 −1 0 0

0 0 0 0 0 X1

X2
X6 1

0 0 0 0 1
Az 0 1 −1




.

Let P (z, w) = detK and C = {P (z, w) = 0}. The spectral transform is κΓ,w = (C, S, ν) ∈ SN ,
where

p = −
X2X4X6

(
X3X5X6X7

(
X1

2(X4 + 1) +X2X4

)
+X1X2X3

2X4X6
2X7

2 +X1X5
2
)

A(X1X5 +X2X3X4X6X7)

×
1(

X3X4X6X7

(
X1

2X5 +X2(X5 + 1)(X6 + 1)
)
+X1X5(X6(X4 +X5 + 1) +X5 + 1)

) ,

q =
X5

(
−X3X4X6X7

(
X1

2 +X2X6 +X2

)
−X1X5(X6 + 1)

)

BX1X3X7(X1X5(X4X6 +X6 + 1) +X2X3X4X6(X6 + 1)X7)
.

The table below lists the points at infinity for each of the zig-zag paths:
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b1

b2

b3 b4

b5 b6

b7

b8

w

w2

1
X5

X1

X2

X6 1
Az

−1 −1

1
X3

−X7 U −1

Az

X1Bw 1
Bw

b

a

f1 f2

f3 f4

f5 f6

f7 f8

Figure 11: Labeling of the vertices and faces of Γ, and a cocycle and Kasteleyn sign, where Xi =
[wt]([∂fi]), A = [wt]([a]), B = [wt](b) and U = X1X5

X2X3X4X6X7
. The edges with no weight indicated

have weight 1.

Zig-zag path Homology class Basis x1, x2 Point at infinity

α1
(0,1) (0,1),(-1,0)

x1 = 1
Cα1

, x2 = 0

α2 x1 = 1
Cα2

, x2 = 0

β1
(-1,0) (-1,0),(0,-1)

x1 = 1
Cβ1

, x2 = 0

β2 x1 = 1
Cβ2

, x2 = 0

γ1
(0,-1) (0,-1),(1,0)

x1 = 1
Cγ1

, x2 = 0

γ2 x1 = 1
Cγ2

, x2 = 0

δ1
(1,0) (1,0),(0,1)

x1 = 1
Cδ1

, x2 = 0

δ2 x1 = 1
Cδ2

, x2 = 0

(35)
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Nb1,w Nb2,w Nb3,w Nb4,w

Nb5,w Nb6,w Nb7,w Nb8,w

Figure 12: The small polygons for the square-octagon graph.

The discrete Abel map D is given by D(w) = 0 and

D(b1) =
1

2
Dγ +

1

2
Dδ, D(b2) =

1

2
Dβ +

1

2
Dγ ,

D(b3) =
1

2
(−Dα +Dβ +Dγ +Dδ), D(b4) = −Dα +

1

2
Dβ +Dγ +

1

2
Dδ

D(b5) = Dβ, D(b6) = −
1

2
Dα +Dβ +

1

2
Dγ

D(b7) = −
1

2
Dα +

1

2
Dβ +Dγ , D(b8) = −

1

2
Dα +Dβ +Dγ −

1

2
Dδ.

We have DN = Dα +Dβ +Dγ +Dδ, using which we compute

Yb1w =
1

2
Dα +Dβ +Dγ +Dδ, Yb2w =

1

2
Dα +Dβ +Dγ +Dδ,

Yb3w = Dβ +
3

2
Dγ +Dδ, Yb4w = Dβ +

3

2
Dγ +Dδ,

Yb5w =
1

2
Dα +

3

2
Dβ +Dγ +

1

2
Dδ, Yb6w =

1

2
Dα +

3

2
Dβ +Dγ +

1

2
Dδ,

Yb7w =
3

2
Dβ +

3

2
Dγ +

1

2
Dδ, Yb8w =

3

2
Dβ +

3

2
Dγ +

1

2
Dδ.

The corresponding small polygons are shown in Figure 12. Therefore, we have

Vb1w = a(−1,−1)z
−1w−1 + a(0,−1)w

−1 + a(1,−1)zw
−1 + a(−1,0)z

−1 + a(0,0) + a(1,0)z,

where the am satisfy the system of equations Vb1w that we now determine. We have the equation
of type 1:

a(−1,−1)p
−1q−1 + a(0,−1)q

−1 + a(1,−1)pq
−1 + a(−1,0)p

−1 + a(0,0) + a(1,0)p = 0.
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To find the zig-zag paths that contribute equations of type 2, we compute (24). We have

−DN

∣∣
C
= ν(α1) + ν(α2) + ν(β1) + ν(β2) + ν(γ1) + ν(γ2) + ν(δ1) + ν(δ2),

d(w) − d(b1) = −ν(γ1)− ν(δ2),

⌊Yb1w⌋
∣∣
C
= ν(β1) + ν(β2) + ν(γ1) + ν(γ2) + ν(δ1) + ν(δ2),

using which we get that (24) is equal to ν(β1) + ν(β2) + ν(γ2) + ν(δ1), so we have four equations
of type 2, one for each of the zig-zag paths β1, β2, γ2, δ1.

Therefore, we have 5 equations and 6 variables, so we are in the setting of Remark 3.6 where
Vb1w = detVχ

b1w
. Computing the equations of type 2, we get

Vb1w =

∣∣∣∣∣∣∣∣∣∣∣∣

z−1w−1 w−1 zw−1 z−1 1 z
p−1q−1 q−1 pq−1 p−1 1 p

1 Cβ1 0 0 0 0
1 Cβ2 0 0 0 0

Cγ2 0 1 0 C−1
γ2

0
0 0 0 0 Cδ1 1

∣∣∣∣∣∣∣∣∣∣∣∣

.

In like fashion, for Vb2w, we have an equation of type 1 and four equations of type 2 for the zig-zag
paths β1, γ2, δ1, δ2. We compute

Vb2w =

∣∣∣∣∣∣∣∣∣∣∣∣

z−1w w z−1 1 z−1w−1 w−1

p−1q q p−1 1 p−1q−1 q−1

1 Cβ1 0 0 0 0
Cγ2 0 1 0 C−1

γ2
0

0 0 0 0 Cδ1 1
0 0 0 0 Cδ2 1

∣∣∣∣∣∣∣∣∣∣∣∣

.

We write the boundary of the face f7 as the concatenation of the two wedgesW1 and W2 represented
by (w, γ1) and (b2, α1) respectively. We have

rW1 =
Vb2w

Vb1w

(ν(γ1)) =

∣∣∣∣∣∣∣∣∣∣∣∣

Cγ1 0 1 0 C−1
γ1

0
p−1q q p−1 1 p−1q−1 q−1

1 Cβ1 0 0 0 0
Cγ2 0 1 0 C−1

γ2
0

0 0 0 0 Cδ1 1
0 0 0 0 Cδ2 1

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

Cγ1 0 1 0 C−1
γ1

0
p−1q−1 q−1 pq−1 p−1 1 p

1 Cβ1 0 0 0 0
1 Cβ2 0 0 0 0

Cγ2 0 1 0 C−1
γ2

0
0 0 0 0 Cδ1 1

∣∣∣∣∣∣∣∣∣∣∣∣

,
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where to evaluate at ν(γ1), we use the basis x1, x2 from table (35). Similarly, we compute

rW2 = −
Vb1w

Vb2w

(ν(α1)) = −

∣∣∣∣∣∣∣∣∣∣∣∣

0 C−1
α1

0 1 0 Cα1

p−1q−1 q−1 pq−1 p−1 1 p
1 Cβ1 0 0 0 0
1 Cβ2 0 0 0 0

Cγ2 0 1 0 C−1
γ2

0
0 0 0 0 Cδ1 1

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

0 C−1
α1

0 1 0 Cα1

p−1q q p−1 1 p−1q−1 q−1

1 Cβ1 0 0 0 0
Cγ2 0 1 0 C−1

γ2
0

0 0 0 0 Cδ1 1
0 0 0 0 Cδ2 1

∣∣∣∣∣∣∣∣∣∣∣∣

.

It can be verified using computer algebra that X7 = rW1rW2 .

5 The small polygons

In the remaining sections, we prove the results stated in Section 3. In order to invert the spectral
transform, we want to first reconstruct the Qbw, the entries of the w-column of the adjugate matrix,
from the spectral data. To do this, we need to first find the Newton polygon of the Qbw, which
we call the small polygons and denote by Nbw. Explicitly, Nbw is the convex hull of homology
classes of dimer covers of Γ − {b,w}. However, it appears difficult to describe Nbw in a direct
combinatorial way. Instead, we will re-express the problem in terms of toric geometry. The key to
doing this is an extension of the Kasteleyn matrix, which is a map of trivial sheaves on T, to a map
of locally free sheaves on a compactification of T. We are led to consider a stacky toric surface XN

instead of the toric surface XN , because such an extension does not exist on XN unless the polygon
has only primitive sides.

The basics of stacky toric surfaces are recalled in detail in Appendix A.3. For the convenience
of the reader we reproduce some notation.

Let Σ be the normal fan of N . There is a stacky fan Σ = (Σ, β) where

β : ZΣ(1) → M∨,

δρ 7→ |Eρ|uρ,

where uρ is the primitive normal to Eρ. We identify the set of rays Σ(1) of the fan Σ with the
components Dρ of the divisor at infinity

ρ↔ τρ = R≥0uρ.

We assign to Σ a smooth toric Deligne-Mumford stack XN , which contains the torus T as a dense
open subset.

We consider the stack rather than the toric surface since we construct an extension of the
Kasteleyn operator to a compactification of the torus T in Lemma 5.1. There is no such extension
on the toric surface when the Newton polygon is not simple, but there is one on the stack.
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5.1 Extension of the Kasteleyn operator

Define for each black vertex b the line bundle

Eb := OXN

(
D(b) −

∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ

)
,

and for each white vertex w, the line bundle

Fw := OXN
(D(w)).

Let
E :=

⊕

b∈B

Eb, F :=
⊕

w∈W

Fw.

They are locally free sheaves of the same rank #B = #W on XN .

Proposition 5.1. The Kasteleyn operator K extends to a map of locally free sheaves on XN :

K̃ : E → F . (36)

Proof. By definition,

Kwb =
∑

e∈E(Γ) incident to b,w

wt(e)ǫ(e)φ(e).

We need to show that for any edge e with vertices b,w, the character φ(e) is a global section of

HomXN
(Eb,Fw) ∼= OXN

(
D(w)−D(b) +

∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ

)
.

Let m ∈ M be such that φ(e) = χm and let D := D(w) −D(b) +
∑

ρ∈Σ(1)

∑
α∈Zρ:b∈α

1
|Eρ|

Dρ. By

Proposition A.3, χm is a global section of the line bundle OXN
(D) if and only if m ∈ PD ∩ M.

Using (52), this is equivalent to showing that for every edge e = bw, we have

div φ(e) +D(w) −D(b) +
∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ ≥ 0,

where div φ(e) =
∑

ρ∈Σ(1)〈m,uρ〉Dρ as in (48).
Let α, β be the zig-zag paths through e, with α ∈ Zσ, β ∈ Zρ. Then by Lemma 3.2, we have

D(w)−D(b) = −
1

|Eσ|
Dσ −

1

|Eρ|
Dρ − div φ(e).

This implies

div φ(e) +D(w)−D(b) +
∑

τ∈Σ(1)

∑

γ∈Zτ :b∈γ

1

|Eτ |
Dτ =

∑

τ∈Σ(1)

∑

γ∈Zτ :b∈γ
γ 6=α,β

1

|Eτ |
Dτ ≥ 0. (37)
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The small polygon Nbw is by definition the Newton polygon of Qbw. By Proposition A.3, this is
equivalent to saying that Qbw is a global section of a line bundle OXN

(Ybw), where Ybw is the divisor
associated to Nbw by the correspondence (52). Now that we have shown that K is a global section
of HomXN

(E ,F), we can take exterior powers to find which line bundle OXN
(Ybw) the minor Qbw

of K is a global section of.
Taking the determinant of the map (36), we see that det K̃ is a global section of the line bundle

HomXN

( ∧

b∈B

Eb,
∧

w∈W

Fw

)
∼= OXN

(∑

w∈W

D(w)−
∑

b∈B

(
D(b) −

∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ

))
. (38)

Lemma 5.2. Let DN be the divisor associated to N by the correspondence (52) between divisors
and polygons. Then one has

∑

w∈W

D(w) −
∑

b∈B

(
D(b)−

∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ

)
= DN . (39)

Therefore,
det K̃ ∈ H0(XN ,OXN

(DN )).

Proof. Let aρ be the coefficient of Dρ in DN . Let (i1, i2) be a vertex of P contained in Eρ and let m
be the associated extremal dimer cover. We pair up black and white vertices in the sum according
to m: ∑

e=bw∈m

(
D(w)−D(b) +

∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ

)
.

Now we observe that if e is not contained in any zig-zag path in Zρ, then Dρ does not appear in
the summand, and if e is contained in a zig-zag path associated to Eρ, then Dρ appears twice but
with opposite signs, modulo contributions from intersections of edges with γz, γw. Therefore, there
is no net contribution to the coefficient of Dρ except for the intersections of edges in m with γz, γw,
which is the same as in

−
∑

e∈m

div φ(e) = − div zi1wi2 ,

which is aρ. Comparing with (38), we see that (39) implies the second statement.

Now we consider the codimension 1 exterior power, where we remove {b,w}. Let Q̃ be the

adjugate matrix of K̃. Set

Ybw := DN −D(w) +D(b)−
∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ.

Corollary 5.3. Q̃bw ∈ H0(XN ,OXN
(Ybw)).

We therefore arrive at the definition of the small polygon Nbw given in Definition 3.3 by the
correspondence (52).
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5.2 Points at infinity

In this section, we prove that the points at infinity of C are as described in Section 2.7. We use
the notations UΣ ⊂ CΣ(1) and the standard coordinates (zρ) on CΣ(1) from Appendix A.3. The
toric variety XN is the quotient UΣ/H , where H is the kernel of the map (C×)Σ(1) → T sending

(zρ)ρ∈Σ(1) to (
∏

ρ z
〈(1,0),uρ〉
ρ ,

∏
ρ z

〈(0,1),uρ〉
ρ ). There is a canonical map π : UΣ → XN given by sending

(zρ) to H ·(z
|Eρ|
ρ ) which induces the coarse moduli space map π : XN → XN . The spectral curve C is

cut out by the section P = P (z, w) of OXN
(DN ). The pullback π∗P defines a section of OXN

(DN )
which is a G-invariant section of OUΣ , so it vanishes on a G-invariant subvariety CUΣ . Each point
at infinity of C corresponds to a G-invariant set of points at infinity of CUΣ , so we will determine

the points at infinity of C from the points at infinity of CUΣ . By Lemma 5.2, π∗P = det K̃ so the

points at infinity of CUΣ are obtained by setting zρ = det K̃ = 0 for ρ ∈ Σ(1).
From (37) and Proposition A.3, for e = bw, we get that φ(e) corresponds to the G-invariant

section of OUΣ given by

φ(e) =
∏

τ∈Σ(1)

∏

γ∈Zτ :b∈γ
γ 6=α,β

zτ . (40)

The divisor Dρ in XN corresponds to {zρ = 0} ⊂ UΣ. φ(e) vanishes on {zρ = 0} precisely when
there is a zig-zag path α ∈ Zρ such that b is contained in α but w is not contained in α. This
implies that when restricted to {zρ = 0}, after reordering the black and white vertices, the extended

Kasteleyn operator K̃ takes a block-upper-triangular form




K̃
∣∣∣
α1

∗

K̃
∣∣∣
α2

∗

. . .
...

K̃
∣∣∣
αn

∗

K̃
∣∣∣
Γ−{α1,...,αn}




,

where Zρ = {α1, . . . , αn}, K̃
∣∣∣
αi

is the restriction of K̃ to the black and white vertices in αi, and

the ∗’s denote some possibly nonzero blocks whereas any block that has not been indicated is zero.
In particular, the nonzero blocks ∗ are only in the last column (in these blocks, b is not in α but w
is in α). Note that the zig-zag paths α1, . . . , αn do not share any vertices because of minimiality

since otherwise we would have a parallel bigon, so the blocks K̃
∣∣∣
α1

, . . . , K̃
∣∣∣
αn

do not overlap.
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If α ∈ Zρ is b1 → w1 → b2 → · · · → wd → b1, the determinant of the block K̃
∣∣∣
α
is

det K̃
∣∣∣
α
= det




K̃w1b1 K̃wdb1

K̃w1b2 K̃w2b2

K̃w2b3

. . .
. . .

K̃wd−1bd
K̃wdbd




=

d∏

i=1

K̃wibi
− (−1)d

d∏

i=1

K̃wi−1bi

= −

d∏

i=1

(wt(biwi−1)ǫ(biwi−1)φ(biwi))

(
d∏

i=1

φ(biwi−1)

φ(biwi)
− Cα

)
,

where we have used the definition of the Kasteleyn matrix (see (1), (2). Plugging in (40) and using
the fact that α intersects a zig-zag path β ∈ Zτ 〈[α], uτ 〉 times, we get

d∏

i=1

φ(biwi−1)

φ(biwi)
=

∏

τ∈Σ(1)

z−|Eτ |〈[α],uτ 〉
τ .

Therefore, the points at infinity of CUΣ are given by setting zρ = 0 and
∏

τ∈Σ(1) z
−|Eτ |〈[α],uτ 〉
τ = Cα.

The point at infinity of C is the point obtained by applying π to any of these points. From the

definition of π, we get that
∏

τ∈Σ(1) z
−|Eτ |〈[α],uτ 〉
τ = π∗χ−[α], so the point at infinity of C is given by

χ−[α] = Cα. (41)

6 Behaviour of the Laurent polynomial Qbw(z, w) at infinity

We proved in Corollary 5.3 that the Laurent polynomial Qbw(z, w) lies in the finite dimensional
vector space H0(XN ,OXN

(Ybw)). We need some additional constraints on Qbw(z, w) to determine
it. Corollary 6.3 provides g linear equations for the coefficients of Qbw(z, w) coming from the
vanishing of Qbw(z, w) at the g points of the divisor Sw. We obtain additional equations from the
behaviour of Qbw(z, w) at the points at infinity of the spectral curve, which we study in this section.

Recall that XN is the toric surface associated to N compactifying T . The restriction of the
Kasteleyn operator to the open spectral curve C◦ is a map of trivial sheaves:

K
∣∣
C◦

:
⊕

b∈B

OC◦ −→
⊕

w∈W

OC◦ .

Recall the correspondence between divisors D and invertible sheaves with rational sections (L, s):
given a divisor D, the corresponding invertible sheaf L = OC(D) is defined on an open U by

H0(U,OC(D)) := {t ∈ K(C)× : (div t+D)
∣∣
U
≥ 0} ∪ {0},

with the obvious restriction maps, where K(C)× denotes the nonzero rational functions on C. The
rational section s corresponds to the rational function 1. On the other hand, given (L, s), we obtain
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D as the divisor div s. Moreover, there is a correspondence between rational functions t on C and
rational sections t of L given by t 7→ t := st. In particular,

div t = div t+ div s = div t+D, (42)

and so t is regular if and only if div t+D ≥ 0.
A similar proof to Proposition 5.1 shows that the Kasteleyn matrix K, which is a matrix of

rational functions on C, defines a regular map K of locally free sheaves on C extending K
∣∣
C◦
,

providing an exact sequence

0→M→
⊕

b∈B

OC

(
d(b)−

∑

α∈Z:b∈α

ν(α)
)

K
−→

⊕

w∈W

OC(d(w))→ L → 0, (43)

whereM and L are the kernel and cokernel of the map K respectively. When we say K is regular,
we mean that each entry Kwb is a regular section of the corresponding Hom line bundle

HomOC

(
OC(d(b) −

∑

α∈Z:b∈α

ν(α)),OC(d(w))
)
.

For generic dimer weights, Σ is smooth, andM and L are line bundles (so Q has rank 1). Let sb
and sw be sections of

M∨ ⊗OC

(
d(b)−

∑

α∈Z:b∈α

ν(α)
)
and L ⊗OC(d(w))

∨

respectively, given by the b-entry of the kernel map and w-entry of the cokernel map respectively.
Since Q has rank 1, we have Qbw = sbsw. Denote by Sb and Sw the effective divisors on the open
spectral curve C◦ given by vanishing of the b-row and w-column of Q respectively, or equivalently,
the vanishing of sb and sw respectively.

Lemma 6.1.

divC sb = Sb +
∑

α∈Z:b/∈α

ν(α),

divC sw = Sw,

Proof. By the definition, (divC sb)
∣∣
C◦

= Sb and (divC sw)
∣∣
C◦

= Sw, so it only remains to find their
orders of vanishing at infinity.

Let U ⊂ C be a neighbourhood of ν(α) that does not contain any other point at infinity. Let u
be a local parameter in U that vanishes to order 1 at ν(α) and nowhere else. When restricted to
U , each of the line bundles in the source and target of K in (43) is of the form OU (kν(α)) for some
k ∈ Z. We trivialize OU (kν(α)) as follows:

OU (kν(α))
∼=
−→ OU

f 7→ ukf.

Let us order the black and white vertices so that the vertices on α come first. Then in U , we
have

K =

(
K1 B
uA K2

)
+O(u),
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where K1,K2 are the restrictions of K to α and Γ− α respectively. Since corank K = 1 and since
we know corank K1 > 0 from the computation of the determinant in Section 5.2, we have corank
K1 = 1 and that K2 is invertible. Let v ∈ kerK1. Then,

kerK = (v,−uK−1
2 Av) +O(u).

If any entry in v or K−1
2 Av is 0, then it means that some sb is identically 0. Let Q denote the

adjugate matrix of K. Since Q has rank 1, we have Qbw = sbsw = 0, so we will have Qbw = 0 for
all w ∈ W . On the other hand, Qbw is the signed partition function for dimer covers of Γ \ {b,w},
so if we choose w such that bw is an edge of Γ used in a dimer cover, then Qbw 6= 0 for generic
dimer weights, a contradiction. Therefore, the entries of kerK are nonzero when u 6= 0, so sb has
a simple zero at ν(α) for all b 6∈ α and has no zeroes or poles for b ∈ α.

Similarly, let v′ ∈ kerK∗
1 . We have

kerK
∗
= (v′,−(K∗

2 )
−1Bv′) +O(u).

For generic dimer weights, none of the entries of (K∗
2 )

−1Bv′ can vanish, so sw has no zeroes or
poles at ν(α).

Corollary 6.2. divC Qbw = Sb + Sw −DN

∣∣
C
+ d(w)− d(b) +

∑
α∈Z ν(α).

Proof. Let Q denote the adjugate matrix of K. Since Q has rank 1, we have Qbw = sbsw, so that

divC Qbw = Sb + Sw +
∑

α∈Z:b/∈α

ν(α).

A computation similar to Corollary 5.3 shows that

Qbw ∈ H0(C,OC(−DN

∣∣
C
+ d(w)− d(b) +

∑

α∈Z:b∈α

ν(α))).

Qbw is the rational function corresponding to the rational section Qbw. Therefore, using (42), we
have

divC Qbw = divC Qbw −DN

∣∣
C
+ d(w)− d(b) +

∑

α∈Z:b∈α

ν(α)

= Sb + Sw −DN

∣∣
C
+ d(w)− d(b) +

∑

α∈Z

ν(α).

Corollary 6.3. We have for all b ∈ B,w ∈W , degSb = degSw = g, where g is the genus of C.

Proof. Let ω∗ denote the canonical divisor of ∗. We have ωXN
= −

∑
ρ∈Σ(1) Dρ ([CLS11, Theorem

8.2.3]). By the adjunction formula, we get ωC = DN

∣∣
C
−
∑

α∈Z ν(α). Since Qbw is a rational
function on C, we have deg divCQbw = 0. Since deg(d(w)−d(b)) = −2 and degωC = 2g−2, we get
deg(Sb + Sw) = 2g. By symmetry under interchanging B and W , we get deg Sb = deg Sw = g.

Recall that the number g is also equal to the number of interior lattice points in N for generic
C ∈ |DN |.
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Proposition 6.4. The line bundle L is isomorphic to OC(Sw+d(w)) for any w ∈W . It has degree
g − 1.

Proof. By Lemma 6.1, sw is a section of L⊗OC(d(w))
∨ with divisor Sw. Therefore, we must have

L ⊗OC(d(w))
∨ ∼= OC (Sw) ,

which implies L ∼= OC(Sw+d(w)). Since deg Sw = g and deg d(w) = −1, we get degL = g− 1.

7 Equations for the Laurent polynomial Qbw

Since Qbw has Newton polygon Nbw, we have

Qbw =
∑

m∈Nbw∩M

amχm,

for some am ∈ C. We know that Qbw vanishes on Sw, which gives g linear equations among the
(am)m∈Nbw∩M. However these g linear equations are not usually sufficient to determine Qbw, so we
need to find some additional equations. These additional equations will come from the vanishing
of Qbw at the points at infinity.

7.1 Additional linear equations for Qbw

The fact that the Newton polygon of Qbw is the small polygon Nbw imposes certain inequalities on
the order of vanishing of Qbw at points at infinity of C. Corollary 6.2 imposes additional constraints
that are linear equations in the coefficients of Qbw. Inverting this linear system gives (am)m∈Nbw∩M

and therefore Qbw.
We now give the precise statement. For a Q-divisor D =

∑
ρ∈Σ(1) bρDρ, we define a (Z-) divisor

⌊D⌋ :=
∑

ρ∈Σ(1) ⌊bρ⌋Dρ, where ⌊x⌋ is the largest integer n such that n ≤ x. It is the pushforward
of D by the canonical projection XN → XN .

Proposition 7.1. The extra linear equations for (am)m∈Nbw∩M from vanishing of Qbw at points
at infinity correspond to the points in

−DN

∣∣
C
+ d(w)− d(b) +

∑

α∈Z

ν(α) + ⌊Ybw⌋
∣∣
C
. (44)

Proof. A generic Laurent polynomial F of the form
∑

m∈Nbw∩M amχm has order of vanishing

divC F
∣∣
C
≥ −⌊Ybw⌋

∣∣
C

at the points at infinity of C. From Corollary 6.2, we have that divC Qbw = Sb + Sw − DN

∣∣
C
+

d(w)− d(b) +
∑

α∈Z ν(α). The discrepancy provides the extra equations.

Now we describe these extra linear equations explicitly. Suppose α ∈ Zρ is a zig-zag path that
contributes a linear equation. We extend [α] to a basis ([α] = x1, x2) of M such that 〈x2, uρ〉 = 1,
so that for any m ∈M, we can write

χm = xbm
1 xcm

2 , bm, cm ∈ Z.

Let Nρ
bw be the set of lattice points in Nbw closest to the edge Eρ of N i.e., the set of points in

Nbw that minimize the functional 〈∗, uρ〉.
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Proposition 7.2. Suppose Qbw =
∑

m∈Nbw∩M amχm and suppose α ∈ Zρ is a zig-zag path that
contributes a linear equation. Then, the linear equation given by α is:

∑

m∈Nρ
bw∩M

amC−bm
α = 0.

Proof. The affine open variety in XN corresponding to the cone ρ is

Uρ = SpecC[x±1
1 , x2] ∼= C× × C,

and Dρ ∩ Uρ is defined by x2 = 0.
A generic curve C meets Dρ transversely at ν(α), and therefore we may take x2 as a uniformizer

of the local ring OC,ν(α) at ν(α). For each m ∈ Nρ
bw ∩M, we have

χm = xbm
1 xp

2, bγ , p ∈ Z,

where p is the same for all of them, and is the coefficient of ν(α) in −[Ebw]
∣∣
C
. Then using x−1

1 = Cα

at ν(α), we have

Qbw =




∑

m∈Nρ
bw∩M

amC−bm
α


 xp

2 +O(xp+1
2 ). (45)

Since α contributes a linear equation, (45) must vanish at order xp
2, so

∑
m∈Nρ

bw∩M amC−bm
α = 0.

7.2 The system of linear equations Vbw

Recall from Section 3 the system of linear equations Vbw. These are linear equations in the variables
(am)m∈Nbw∩M. Recall also that the matrix Vbw is defined such that these equations are given by

Vbw(am) = 0.

It is not necessarily a square matrix. However, we have:

Proposition 7.3. For generic spectral data, Qbw is the unique solution of the linear system of
equations Vbw modulo scaling.

Remark 7.4. 1. While the definition of Vbw makes sense for all w ∈ W , Proposition 7.3 only
holds when w = w since (pi, qi)

g
i=1 depends on w.

2. For generic spectral data, the equations (23) are linearly independent, but the equations (25)
may not be.

The rest of this section is devoted to the proof of Proposition 7.3. Consider following the exact
sequence on XN , obtained by tensoring the closed embedding exact sequence of i : C →֒ XN by
OXN

(⌊Ybw⌋).

0→ OXN
(⌊Ybw⌋ −DN )→ OXN

(⌊Ybw⌋)→ i∗OC(⌊Ybw⌋
∣∣
C
)→ 0.

The following is a portion of the long exact sequence of cohomology.

0→ H0(XN , ⌊Ybw⌋ −DN )→ H0(XN , ⌊Ybw⌋)→ H0(C, ⌊Ybw⌋
∣∣
C
). (46)

We need the following technical lemma.
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Lemma 7.5. The restriction map H0(XN , ⌊Ybw⌋)→ H0(C, ⌊Ybw⌋
∣∣
C
) is injective.

Proof. If χm ∈ H0(XN , ⌊Ybw⌋ −DN ), then divχm + ⌊Ybw⌋ −DN ≥ 0. This implies that

divχm + Ybw −DN =
∑

ρ∈Σ(1)

∑

α∈Zρ

〈m,uρ〉
Dρ

|Eρ|
−D(w) +D(b) −

∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ ≥ 0.

(47)

Let γ be a cycle in T with homology class m. The total number of signed intersections of γ with
all zig-zag paths is zero. This number is the sum of the coefficients of

∑
ρ∈Σ(1)

∑
α∈Zρ

〈m,uρ〉
Dρ

|Eρ|
.

Let w′ be any white vertex adjacent to b. Then we have

−D(w) +D(b) −
∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ = (D(w′)−D(w))−

∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

bw′ /∈α

1

|Eρ|
Dρ.

The sum of the coefficients of D(w′) − D(w) is the signed number of intersections with zig-
zag paths of any path in R from w to w′, which is also 0. Since the coefficients of the last
term −

∑
ρ∈Σ(1)

∑
α∈Zρ:b∈α

bw′ /∈α

1
|Eρ|

Dρ are strictly negative, the sum in (47) cannot be non-negative.

Therefore, H0(XN , ⌊Ybw⌋ − DN ) = 0, which by (46) means that the map H0(XN , ⌊Ybw⌋) →
H0(C, ⌊Ybw⌋

∣∣
C
) is injective.

Proof of Proposition 7.3. 1. Existence: By Theorem 7.3 of [GK13], the map κΓ,w is dominant.
So a generic spectral data is in the image of κΓ,w. For such a spectral data, Qbw satisfies:

(a) The system of equations (23) because, by definition of the spectral transform, Qbw

vanishes at the points of the divisor S =
∑g

i=1(pi, qi).

(b) The equations (25) by Proposition 7.2.

2. Uniqueness: Suppose Vbw is a solution of Vbw. Since Vbw has Newton polygon Nbw, we
have divC F

∣∣
C
≥ −⌊Ybw⌋

∣∣
C
as in the proof of Proposition 7.1. The additional equations in

Proposition 7.1 then imply that
divC Vbw ≥ S +D,

where D := −DN

∣∣
C
+ d(w) − d(b) +

∑
α∈Z ν(α) satisfies degD = −2g. Therefore, Vbw

∣∣
C

can be identified with a section of OC(−D) vanishing at the points of S. Let ωC denote the
canonical divisor of C as in Section 6. By the Riemann-Roch theorem,

h0(C,OC(−D)− h1(C,OC(−D)) = deg(−D)− g + 1 = g + 1.

By Serre duality, h1(C,OC(−D)) = h0(C, ωC(D)), which equals 0 since ωC(D) has negative
degree −2. For generic S that avoids the base locus of OC(−D), the requirement that the
section of OC(−D) corresponding to Vbw vanishes at each of the g points of S imposes g
independent conditions, and therefore determines Vbw

∣∣
C
uniquely up to multiplication by a

nonzero complex number. By Lemma 7.5, Vbw is unique up to multiplication by a nonzero
complex number.
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Remark 7.6. It is easy to see using Riemann-Roch that the number of equations in Vbw is equal
to h0(C, ⌊Ybw⌋

∣∣
C
)− 1. On the other hand, the number of variables is h0(XN , ⌊Ybw⌋). However, the

map in Lemma 7.5 is not necessarily an isomorphism (there may be sections on the curve that are
not restrictions of sections on the surface), so we only have the inequality

# equations in Vbw ≥ # variables− 1.

A Toric geometry

In A.1 and A.2, we give a brief background on toric varieties; further details can be found in the
books [Ful93] and [CLS11].

A.1 Toric varieties

A toric variety X over C is an algebraic variety containing the complex algebraic torus T ∼= (C×)n

as a Zariski open subset, such that the action of T on itself extends to an action of T on X .
Let M be a lattice, and let M∨ := HomZ(M,Z) denote the dual lattice. Let T := M∨ ⊗ C× =

Hom(M,C×) be the complex algebraic torus with the lattice of characters M. We denote by
χm : T → C× the character associated to m ∈ M. Let 〈∗, ∗〉 be the pairing between M and M∨.
In our case M = H1(T,Z)∼= Z2, so M∨ = H1(T,Z)∼= Z2 and T = H1(T,C×)∼= (C×)2. We have
χ(i,j)(z, w) = ziwj .

A fan Σ is a collection of cones in the real vector space M∨
R := M∨ ⊗Z R, which is just the Lie

algebra of the real torus T(R), such that

1. Each face of a cone σ ∈ Σ is also in Σ.

2. The intersection of two cones σ1, σ2 ∈ Σ is a face of each of them.

Each cone σ ∈ Σ gives rise to an affine toric variety

Uσ = SpecC[Sσ],

where Sσ = σ∨ ∩M is a semigroup, σ∨ is the cone dual to σ, and C[Sσ] is its semigroup algebra:

C[Sσ] =

{
∑

m∈Sσ

cmχm : cm ∈ C, cm = 0 for all but finitely many m ∈ Sσ

}
.

If τ ⊂ σ, then Uτ is an open subset of Uσ. Gluing the affine toric varieties Uσ1 ,Uσ2 along Uσ1∩σ2

for all cones σ1, σ2 ∈ Σ, we get the toric variety XΣ associated to Σ.
In particular, if σ = {0}, then Sσ = M, so C[Sσ] = C[M] and Uσ = T. So XΣ contains T.
We define the action T×Uσ −→ Uσ via the dual map of the algebras of functions:

C[Sσ] −→ C[M]⊗ C[Sσ],

χm 7−→ χm ⊗ χm.

When σ = {0}, this is the action of T on itself. The action of T on Uσ is compatible with the
gluing, and therefore gives an action of T on XΣ.
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We denote by Σ(r) the set of r-dimensional cones of Σ. There is an inclusion-reversing bijection
between T-orbit closures in XΣ and cones in Σ. Under this bijection, each ray ρ ∈ Σ(1) corresponds
to a T-invariant divisor Dρ. Let uρ be the primitive vector generating ρ. Then, the (Weil) divisor
of the character χm is

divχm =
∑

ρ∈Σ(1)

〈m,uρ〉Dρ. (48)

The following fundamental exact sequence computes the class group of Weil divisors of XΣ:

0→ M→ ZΣ(1) → Cl(XΣ)→ 0, (49)

m 7→ (〈m,uρ〉)ρ∈Σ(1).

A.2 Polygons and projective toric surfaces

Given a convex integral polygon N in the plane MR := M⊗Z R, we construct the normal fan Σ of
N as follows:

1. Σ(0) = {0}.

2. For each edge Eρ of N , let uρ ∈ M∨ be the primitive inward normal vector to Eρ, providing
an element of Σ(1) given by the ray spanned by uρ.

3. For each vertex v of N , we get an element of Σ(2) by taking the convex hull of the two rays
in Σ(1) associated to the two edges incident to v in N .

The normal fan Σ gives rise to a toric surface denoted below by XN . The orbit-cone correspon-
dence assigns to each edge Eρ of N a divisor Dρ

∼= P1. These divisors intersect according to the
combinatorics of N . Their union is the divisor at infinity XN − T.

In fact the polygon N determines a pair (XN , DN), where DN is an ample divisor at infinity:

DN :=
∑

ρ∈Σ(1)

aρDρ,

where aρ is such that the edge Eρ of N is contained in the line {m ∈M⊗ R : 〈m,uρ〉 = −aρ}.
The linear system of hyperplane sections |DN | has the following properties:

1. H0(XN ,OXN
(DN )) ∼=

⊕
m∈N∩M C · χm.

2. The genus of a generic curve C in |DN | is the number of interior lattice points of N .

3. Curves in |DN | intersect the divisorDρ with multiplicity |Eρ| (the number of primitive vectors
in Eρ).

A.3 Toric stacks

We follow [BH09, Section 2]. Given a convex integral polygon N ⊂ MR, we define a stacky fan Σ

as the following data:

1. The normal fan Σ of N , defined above.

2. For each ray ρ ∈ Σ(1), the vector |Eρ|uρ generating the ray ρ.
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We define a fan Σ̃ ⊂ RΣ(1) as follows: for σ ∈ Σ, we define σ̃ ∈ Σ̃ by

σ̃ = cone(eρ : ρ ∈ σ(1)) ⊂ RΣ(1),

where {eρ} is the standard basis in ρ in RΣ(1), and σ(1) denotes the rays of Σ incident to σ. Then

Σ̃ is the fan generated by the cones σ̃ and their faces.
Let UΣ be the toric variety of the fan Σ̃. It is of the form CΣ(1)− (closed codimension 2 subset).
Consider the following map, modifying the map (49) for polygons N with a non-primitive side:

β : M→ ZΣ(1)

m 7→ (|Eρ|〈m,uρ〉)ρ.

Applying the functor HomZ(∗,C
×), we get a surjective map (C×)Σ(1) → T. Denote by G its kernel.

So there is an exact sequence
1→ G→ (C×)Σ(1) → T→ 1. (50)

So G is a subgroup of the torus (C×)Σ(1) of the toric variety UΣ. Therefore, G acts on UΣ.
Explicitly, λ = (λρ) ∈ (C×)Σ(1) is in G if and only if

∏

ρ∈Σ(1)

λ|Eρ|〈m,uρ〉
ρ = 1 (51)

for all m ∈M. Let z = (zρ) ∈ CΣ(1) denote the standard coordinates on CΣ(1). The action of G on
UΣ is λ · z = (λρzρ).

Definition A.1. The toric stack XN is the smooth Deligne-Mumford stack [UΣ/G].

A.4 Example: a stacky P2.

Consider the polygon N given by the convex-hull of {(0, 0), (2, 0), (0, 2)}. The rays of its normal
fan Σ are generated by u1 = (1, 0), u2 = (0, 1), u3 = (−1,−1) with |E1| = |E2| = |E3| = 2. The fan

Σ̃ ⊂ R3 is generated by the cones

σ̃1 = cone(e2, e3), σ̃2 = cone(e1, e3), σ̃3 = cone(e1, e2),

and their faces, where {ei} is the standard basis of R3. These cones define affine varieties

U1 = SpecC[X±1
1 , X2, X3], U2 = SpecC[X1, X

±1
2 , X3], U3 = SpecC[X1, X2, X

±1
3 ],

respectively. The face σ̃12 := σ̃1∩σ̃2 = cone(e3) defines the affine variety U12 = SpecC[X±1
1 , X±1

2 , X3],
identified with U1 ∩ U2. Similarly, we define U23 and U13. Gluing Ui and Uj along the Uij for all

i, j, we see that the toric variety UΣ of Σ̃ is C3 − 0. The map M → ZΣ(1) is

Z2 → Z3

(1, 0) 7→ (2, 0,−2)

(0, 1) 7→ (0, 2,−2).
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The group G is the kernel of

(C×)3 → (C×)2

(t1, t2, t3) 7→

((
t1
t3

)2

,

(
t2
t3

)2
)
.

Thus, G = {(±λ,±λ, λ) : λ ∈ C×} and it acts on C3 − 0 by multiplication. The quotient
[C3 − 0/G] is a stacky P2.

A.5 Line bundles and divisors on toric stacks

A line bundle on the quotient stack XN = [UΣ/G] is the same thing as a G-equivariant line bundle
on UΣ. The Picard group of UΣ is trivial, so line bundles on XN correspond to the various G-
linearizations of OUΣ .

Proposition A.2 (Borisov and Hua, 2009 [BH09, Proposition 3.3]). There is an isomorphism,
describing the Picard group of XN via divisors Dρ:

ZΣ(1)/β∗M ∼= Pic XN ,

(bρ)ρ 7→ OXN

( ∑

ρ∈Σ(1)

bρ
|Eρ|

Dρ

)
.

The line bundle OXN

(∑
ρ∈Σ(1)

bρ
|Eρ|

Dρ

)
is the trivial line bundle OUΣ = UΣ × C with the G-

linearization

G× (UΣ × C)→ UΣ × C

λ · (z, t) 7→



λ · z, t
∏

ρ∈Σ(1)

λbρ
ρ



 .

Let D =
∑

ρ∈Σ(1)
bρ

|Eρ|
Dρ be a divisor at infinity on XN . We assign to D a polygon PD in MR

defined by the intersection of the half planes provided by the coefficients of D:

PD :=
⋂

ρ∈Σ(1)

{
m ∈ MR : 〈m,uρ〉 ≥ −

bρ
|Eρ|

}
. (52)

A global section of a line bundle on XN is the same thing as a G-invariant global section of OUΣ . As
in the case of toric varieties, global sections of toric line bundles are identified with integral points
in the associated polygons:

Proposition A.3 (Borisov and Hua, 2009 [BH09, Proposition 4.1]). We have

H0(XN ,OXN
(D)) ∼=

⊕

m∈PD∩M

C · χm.

The G-invariant section of OUΣ corresponding to χm,m ∈ PD ∩ M, is
∏

ρ∈Σ(1) z
aρ
ρ , where aρ =

|Eρ|〈m,uρ〉+ bρ.
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Proof. We have H0(UΣ,OUΣ) = C[zρ : ρ ∈ Σ(1)]. The global section
∏

ρ∈Σ(1) z
aρ
ρ is G-invariant if

and only if ∏

ρ∈Σ(1)

λbρ
ρ ·

∏

ρ∈Σ(1)

zaρ
ρ =

∏

ρ∈Σ(1)

(zρλρ)
aρ for all ρ ∈ Σ(1),

which is equivalent to the equations
∏

ρ∈Σ(1) λ
bρ−aρ
ρ = 1 for all ρ ∈ Σ(1). By exactness of (50), this

is equivalent to the existence of m ∈ M such that aρ − bρ = |Eρ|〈m,uρ〉 for all ρ ∈ Σ(1).

B Combinatorial rules for the linear system of equations Vbw

In this appendix, we collect some combinatorial rules that facilitate the computation of the small
polygons and equations in Vbw.

B.1 Equivalent description of the small polygons

Consider the lines
Lρ := {m ∈MR : 〈m,uρ〉 = −bρ} (53)

that form the boundary of the small Newton polygon Nbw. We give an alternate description of
these lines. Recall that Γ̃ be the biperiodic graph on the plane given by the lift of Γ to the universal
cover of T. The zig-zag paths in Γ̃ for a given ρ divide the plane into an infinite collection of strips
Sρ(d) parameterized by d ∈ 1

|Eρ|
Z such that

Sρ(d) ∩ V (Γ̃) = {v ∈ V (Γ̃) : [Dρ]D(v) = d},

where for a divisor D, [Dρ]D denotes the coefficient of Dρ in D. We assign to each strip Sρ(d) a
line Lρ(d) in MR parallel to Eρ, using the following rule illustrated on Figure 13:

1. The line associated to a strip Sρ(d) contains the side Eρ if and only if either

i) The strip Sρ(d) is on the right (when facing in the direction of the path) of a zig-zag
path α1 ∈ Zρ, and α1 contains b.

ii) The strip Sρ(d) contains b, and b is not in a zig-zag path in Zρ, or

2. Moving to the strip to the left shifts the line 1/|Eρ| steps to the left.

We call the strip to the left of the one whose line contains Eρ, and all strips obtained by its
translations by H1(T,Z), exceptional strips.

Proposition B.1. If we associate lines to strips as above, the boundary of the small Newton polygon
Nbw is given by the lines {Lρ(dρ)}, where dρ ∈

1
|Eρ|

Z is determined by the condition w ∈ Sρ(dρ),

that is, it is the index of the strip containing w in the direction ρ.

Proof. In order for the line Lρ in (53) to contain Eρ, we must have bρ = 0, where bρ is the coefficient
of Dρ in (20). We have to consider two cases.

1. There is a zig-zag path α ∈ Zρ such that b is contained in α. We need [Dρ](D(b)) =
1

|Eρ|
+[Dρ](D(w)), which means w is contained in the strip S to the right of the one containing

b, with α separating the two strips.
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α1

αk

αk−1

α2

α1

αk

empty

αk

α2, . . . , αk

αk−1, αk

empty

αk

...

α1

αk

αk−1

α2

α1

αk

α1, . . . , αk

αk

αk−1, αk

α2, . . . , αk

α1, . . . , αk

αk

...

Figure 13: The lifts of zig-zag paths α1, . . . , αk in Zρ divide the plane into strips. The side Lρ of
the small polygon Nbw and the columns of the matrix Vbw are determined by the strips containing
b and w. The black vertex b is the black dot. On the left panel, b is on a zig-zag path, and on
the right, it is between two zig-zag paths. Written inside each strip in blue is the subset of Zρ that
gives rise to equations in Vbw if w is contained in that strip. Exceptional strips are shaded.

2. No zig-zag path in Zρ contains b. In this case, we need the coefficients [Dρ](D(b)) =
[Dρ](D(w)), which means w is in the strip S containing b.

If w2 is a white vertex in the strip to the left of the strip containing a white w1, then [Dρ](D(w2)) =
[Dρ](D(w1)) +

1
|Eρ|

. So if we define bρ(w1) and bρ(w2) as in (20) with w = w1 and w = w2 respec-

tively, then bρ(w2) = bρ(w1) +
1

|Eρ|
. Note that the line (53) which bounds Nbw2 is given by

Lρ(w2) := {m ∈ MR : 〈m,uρ〉 = bρ(w2)}.

The similar line which bounds Nbw1 is

Lρ(w1) := {m ∈ MR : 〈m,uρ〉 = bρ(w1)},

so the line Lρ(w2) is obtained from the line Lρ(w1) by shifting 1/|Eρ| steps to the left.

B.2 The equations in Vbw

We describe the equations of type 2 in Section 3.1.2.
Let ρ ∈ Σ(1) be a ray and let Zρ = {α1, . . . , αk}, where α1, . . . , αk are labeled in cyclic order.

Their lifts to the universal cover of the torus divides it into strips, see Figure 13. We denote by Si

the strip immediately to the right of αi.

Proposition B.2. The set of extra linear equations is described as follows:
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1. One of these zig-zag paths contains b. We can assume it is α1. Then the subset of Zρ that
contributes an equation to Vbw is:

empty if w ∈ Sk;

αi+1, . . . , αk if w ∈ Si for some i 6= k. (54)

2. The vertex b is not in any of zig-zag paths in Zρ. Then the subset of Zρ is

α1, . . . , αk if w ∈ Sk;

αi+1, . . . αk if w ∈ Si, for some i 6= k. (55)

Proof. Plugging

Ybw = DN −D(w) +D(b) −
∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ.

into (44), we first observe that (44) does not change if we replace w by its any translate on the
universal cover because d(w)−d(b) changes by the same amount as [Ebw]

∣∣
C
but with the opposite

sign. Therefore we may assume that among all its possible translates in the universal cover, the
strip Si is the one that is immediately to the right of b. Then we have

(d(w) − d(b))
∣∣
C∩Dρ

= −ν(α1)− · · · − ν(αi)

and the coefficient of Dρ in (D(w) −D(b)) is − i
k .

Now we distinguish two cases:

1. Suppose b is contained in α1, so that the coefficient of Dρ in
∑

ρ∈Σ(1)

∑
α∈Zρ:b∈α

1
|Eρ|

Dρ is
1
k . Then we have

−D(w) +D(b)−
∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ



∣∣∣∣∣∣
C∩Dρ

= 0,

so that (44) is ν(αi+1) + · · ·+ ν(αk), which proves (54).

2. Suppose b is not contained in any of the αi, so that the coefficient ofDρ in
∑

ρ∈Σ(1)

∑
α∈Zρ:b∈α

1
|Eρ|

Dρ

is 0. We have
−D(w) +D(b) −

∑

ρ∈Σ(1)

∑

α∈Zρ:b∈α

1

|Eρ|
Dρ



∣∣∣∣∣∣
C∩Dρ

=

{
0 if i 6= k,∑k

j=1 ν(αj) if i = k.

This gives

(44) =

{
ν(αi+1) + · · ·+ ν(αk) if i 6= k,∑k

j=1 ν(αj) if i = k.

We obtain (55).
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