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Abstract

Cactus networks were introduced by Lam as a generalization of planar electrical networks.
He defined a map from these networks to the Grassmannian Gr(n + 1, 2n) and showed that
the image of this map, Xn lies inside the totally nonnegative part of this Grassmannian. In
this paper, we show that Xn is exactly the elements of Gr(n + 1, 2n) that are both totally
nonnegative and isotropic for a particular skew-symmetric bilinear form. For certain classes
of cactus networks, we also explicitly describe how to turn response matrices and effective
resistance matrices into points of Gr(n + 1, 2n) given by Lam’s map. Finally, we discuss how
our work relates to earlier studies of total positivity for Lagrangian Grassmannians.

1 Introduction

This paper is motivated by the study of planar networks of electrical resistors. It builds on work
of Curtis, Ingerman, and Morrow [2] and Lam [14], as well as older work, and explains how those
ideas are clarified by thinking about total positivity in Lagrangian Grassmannians.

Let G be a planar graph embedded in a disc D with n vertices on the boundary of D, labeled
1, 2, . . . , n, and a positive real number c(e) associated to each edge e. We think of G as a network
of resistors, where the edge e has conductance c(e) (equivalently, resistance 1/c(e)), and we will be
interested in aspects of the network which are measurable by connecting batteries and electrical
meters to these boundary vertices. We will use the planar electrical network in Figure 1 as our
running example.

In particular, we can imagine placing vertex i at voltage Vi and measuring the resulting current
Ji flowing out of each vertex i (if the current flows in, then Ji is negative). The map from the
voltage vector (V1, V2, . . . , Vn) to the current vector (J1, J2, . . . , Jn) is linear, given by a symmetric
matrix L whose rows and columns sum to 0; the matrix L is called the response matrix. (The
reader who would like purely mathematical definitions of current, voltage and so forth should turn
to Section 2.3.) We consider two planar networks to be electrically equivalent if they have the same
response matrix. The classification of planar networks up to equivalence was carried out by Curtis,
Ingerman, and Morrow [2], building on work of de Verdière, Gitler, and Vertigan [17] and was then
rewritten and improved by Lam [13]; we will describe their results shortly.

We define a grove of G to be a subgraph F of G which contains every vertex of G, contains no
cycles, and where every connected component of F contains a vertex on the boundary of D. The
weight of a grove F , written w(F ), is

∏
e∈F c(e). For i and j distinct vertices on the boundary of

G, we have (from [10,11])

Lij =

∑
F has n − 1 components, i and j in the same component w(F )∑

F has n components w(F )
. (1)
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Figure 1: Our running example of a planar electrical network.
.

The value of Lii is determined by the condition that the rows and columns of L sum to 0. Another
similar formula, due to Kirchhoff, describes the effective resistance Rij between vertices i and j as

Rij =

∑
F has two components, i and j in different components w(F )∑

F connected w(F )
. (2)

We set Rii = 0, so we may speak of the effective resistance matrix R.
Motivated by Equations (1) and (2), we consider sums of w(F ) over groves F with specified

boundary connectivity. We need some combinatorial notation first.
We abbreviate {1, 2, . . . , n} to [n]. A noncrossing partition of the set [n] is a set partition

{B1, B2, . . . , Bk} of [n] which does not contain any two distinct blocks Bi and Bj with a, c ∈ Bi,
with b, d ∈ Bj and a < b < c < d. The number of noncrossing partitions of [n] is the Catalan

number Catn := (2n)!
n!(n+1)! . Each grove F defines a noncrossing partition σ(F ) of [n] where i and j

are in the same block of σ(F ) if and only if the boundary vertices i and j are in the same connected
component of F . For a non-crossing partition σ, define the grove measurements

Λσ =
∑

σ(F )=σ

w(F ).

It turns out [14, Proposition 4.4] that two networks are electrically equivalent if and only if the quan-
tities Λσ are proportional. In other words, it is natural to coordinatize planar electrical networks
using points in RPCatn−1.

Example 1.1. For the planar electrical network in Figure 1, we have

Λ{123} = abc, Λ{1}, {23} = bc, Λ{2}, {13} = ac, Λ{3}, {12} = ab, Λ{1}, {2}, {3} = a+ b+ c.

L =


−ab−ac
a+b+c

ab
a+b+c

ac
a+b+c

ab
a+b+c

−ab−bc
a+b+c

bc
a+b+c

ac
a+b+c

bc
a+b+c

−ac−bc
a+b+c

 R =

 0 ac+bc
abc

ab+bc
abc

ac+bc
abc 0 ab+ac

abc
ab+bc
abc

ab+ac
abc 0

 =

 0 1
a + 1

b
1
a + 1

c
1
a + 1

b 0 1
b + 1

c
1
a + 1

c
1
b + 1

c 0


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We now preview a technical issue. The subset of RPCatn−1 corresponding to electrical networks
is not closed. We can already see this in the case that n = 2 and G is a single edge from 1 to
2. If that single edge has conductance c, then Λ{1,2} = c and Λ{1},{2} = 1. So the subset of RP1

corresponding to this network is the open interval {[c : 1] : 0 < c < ∞}. The limiting point [0 : 1]
can be achieved by taking G to be graph with two vertices and no edges (in other words, deleting the
lone edge from our initial graph). However, the limiting point {[1 : 0]} does not correspond to an
electrical network. Intuitively, this limiting point occurs when the conductance goes to∞ or, in the
language of electrical engineering, the boundary points 1 and 2 are “shorted” to each other. This
idea motivates Lam’s cactus networks, a generalization of electrical networks. Roughly speaking,
a cactus network is a planar electrical network with some boundary vertices shorted together, so
that the shorted vertices form a noncrossing partition of [n]; see Section 2.1 for details. By working
with cactus networks rather than electrical networks, we obtain a closed subset of RPCatn−1. The
reader should feel free to continue thinking of electrical networks for almost all purposes.

Given a subset I of [n], and a non-crossing partition σ of [n], we say that I and σ are concordant if
there is exactly one element of I in each block of σ. (This notation differs from Lam, see Remark 1.3.)
Thus, Equations (1) and (2) can be rewritten as

Lij =
Λ{i,j}, all other blocks singleton

Λall singletons
Rij =

∑
{i,j} concordant to σ Λσ

Λ{1,2,...,n}
(3)

Lam realized that it is valuable to work, not with non-crossing partitions of [n], but with certain
non-crossing partitions of [2n]. Let [ñ] be a second n element index set, with elements {1̃, 2̃, . . . , ñ}.
We consider [n]⊔ [ñ] to be circularly ordered in the order 1, 1̃, 2, 2̃, . . . , n, ñ. Given a non-crossing
partition σ of [n] with k blocks, there is a unique non-crossing partition σ̃ of [ñ] with n + 1 − k
blocks such that σ ⊔ σ̃ forms a non-crossing partition of [n] ⊔ [ñ]. The non-crossing partition σ̃ is
called the Kreweras complement of σ [12], and we will call (σ, σ̃) a Kreweras pair. Given I ⊆ [n]
and Ĩ ⊆ [ñ], and Krewaras pair (σ, σ̃), we will say that (I, Ĩ) and (σ, σ̃) are concordant, if I and σ
are concordant and Ĩ and σ̃ are likewise concordant. So, in this case, #(I ⊔ Ĩ) = n+ 1.

Consider the vector space R2n with basis e1, e1̃, . . . , en, eñ. For I ⊔ Ĩ ⊆ [n] ⊔ [ñ], we put eI,Ĩ =∧
i∈I⊔Ĩ ei, where the wedge product is taken in the order induced on I ⊔ Ĩ from the total order

1 < 1̃ < 2 < 2̃ < · · · < n < ñ. The eI,Ĩ form a basis for
∧n+1 R2n ∼= R(

2n
n+1). Let ∆I,Ĩ denote the

coordinate of
∧n+1 R2n corresponding to eI,Ĩ . We put

∆I,Ĩ =
∑

(σ,σ̃) concordant with (I,Ĩ)

Λσ.

So the ∆’s are related to the Λ’s by a linear map, which can be checked [13, Proposition 5.19] to

be injective, and we get a linear embedding of RPCatn−1 into RP(
2n

n+1)−1. We refer to the subset of

RP(
2n

n+1)−1 where the coordinates ∆I,Ĩ are realized by some cactus network as Xn.

Example 1.2. Continuing with our running example, we have

∆{1}, {1̃ 2̃ 3̃} = ∆{2}, {1̃ 2̃ 3̃} = ∆{3}, {1̃ 2̃ 3̃} = Λ{123} = abc

∆{12}, {1̃ 2̃} = ∆{13}, {2̃ 3̃} = Λ{1},{23} = bc and rotations thereof

∆{12}, {2̃ 3̃} = Λ{1}, {23} + Λ{2}, {13} = bc+ ac and rotations thereof
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∆{123}, {1̃} = ∆{123}, {2̃} = ∆{123}, {3̃} = Λ{1}, {2}, {3} = a+ b+ c.

The phrase “and rotations thereof” indicates that one can, in each, case, obtain two more relations
similar to this one by rotating the subsets of [3] ⊔ [3̃] being considered.

Remark 1.3. Lam actually works with the complementary set, [n] ⊔ [ñ] \ (I ⊔ Ĩ), so he refers to(
2n
n−1

)
throughout. Lam would say that I and σ are concordant when we would say that [n] \ I

and σ are. We find our convention more convenient and will silently convert all of our references
to Lam to use this complementary notation.

We can rewrite Equations (3) in terms of the ∆’s in several equivalent ways, such as the one
below. For convenience, we take 1 ≤ i < j ≤ n:

Lij =
∆

[n]\{j}, {̃i−1,̃i}

∆[n], {̃i}
Rij =

∑j−1
k=i ∆{i,j}, [ñ]\{k̃}

∆{i}, [ñ]
. (4)

Lam shows that every point in Xn is the image, under the Plücker embedding of a point in the
Grassmannian. The Grassmannian Gr(n+ 1, 2n) is the space of (n+ 1)-dimensional subspaces of
R2n. We can represent a point X ∈ Gr(n+1, 2n) as an (n+1)×2n matrix M with rows v1, . . . , vn+1

such that X = Span(v1, . . . , vn+1). Note that the matrices that satisfy these conditions are exactly
those matrices we can obtain from M by row operations. This lets us identify Gr(n + 1, 2n) with
full rank (n+ 1)× 2n matrices modulo row operations. The Plücker embedding is the map

ι : Gr(n+ 1, 2n) ↪→ P(
∧n+1

R2n)

X = Span(v1, . . . , vn+1) 7→ [v1 ∧ · · · ∧ vn+1],

where v1, . . . , vn+1 are vectors that span X. In coordinates, ∆I,Ĩ(X) := |Mi1,...,ik | where |Mi1,...,ik |
is the maximal minor obtained from columns I⊔Ĩ = {i1 < i2 < · · · < in+1} ofM . These coordinates
on Gr(n + 1, 2n) are called Plücker coordinates. Note that this map is well defined because row
operations scale all maximal minors of M by a constant. The totally nonnegative Grassmannian,
Gr≥0(n + 1, 2n), introduced by Postnikov [15], is the subset of Gr(n + 1, 2n) where all Plücker
coordinates are nonnegative. Lam’s main theorem (stated as Theorem 2.5 below) is that Xn is the

intersection, inside RP(
2n

n+1)−1, of Gr≥0(n+ 1, 2n) with RPCatn−1.

Example 1.4. Continuing with our running example, the row span of the matrix

X =


0 a+ b+ c 0 −a− b− c 0 a+ b+ c
1 ab

a+b+c 0 0 0 − ac
a+b+c

0 − ab
a+b+c −1 − bc

a+b+c 0 0

0 0 0 bc
a+b+c 1 ac

a+b+c


has Plücker coordinates as given in Example 1.2. Note that the columns appear in order 1, 1̃, 2, 2̃,
3, 3̃. The first row, rescaled by 1/(a+ b+ c) is (0, 1, 0,−1, 0, 1) and the sum of the other three rows
is (1, 0,−1, 0, 1, 0).

There are, of course, many matrices with the same row span. Another matrix whose Plücker
coordinates are the same up to a global sign, and which hence has the same row span, is.

X̃ =


abc 0 −abc 0 abc 0
1
a 1 1

b 0 0 0
0 0 − 1

b −1 − 1
c 0

− 1
a 0 0 0 1

c 1

 .
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Lam’s paper leaves it as a mystery how one should understand this linear slice of Gr(n+1, 2n).
The goal of this paper is to answer that mystery. Let Ω be the skew-symmetric bilinear form

Ω((x1, x1̃, x2, x2̃, . . . , xn, xñ), (y1, y1̃, y2, y2̃, . . . , yn, yñ)) =

n∑
i=1

(xiỹi − xĩyi) +

n−1∑
j=1

(xj+1yj̃ − xj̃yj+1) + (−1)n(x1yñ − xñy1). (5)

The form Ω has a two dimensional kernel, spanned by the vectors (0, 1, 0,−1, . . . , 0, (−1)n−1)
and (1, 0,−1, 0, . . . , (−1)n−1, 0). We define an (n+1)-dimensional subspace X of R2n to be isotropic
for Ω if Ω(x⃗, y⃗) = 0 for any x⃗ and y⃗ in X. We define IGΩ(n + 1, 2n) to be the space of isotropic
subspaces inside Gr(n+ 1, 2n).

Since Ω has corank 2, IGΩ(n + 1, 2n) is isomorphic as an abstract variety to the Lagrangian
Grassmannian LG(n − 1, 2n − 2). However, as we will discuss in Section 5, the total positivity
structure on IGΩ(n+ 1, 2n) is rather different from those previously studied for Lagrangian Grass-
mannians.

Then our main result is

Theorem 1.5. The intersection RPCatn−1 ∩ Gr(n + 1, 2n) inside RP(
2n

n+1)−1 is IGΩ(n + 1, 2n).
As a consequence, Xn is the space of (n + 1)-dimensional subspaces of R2n which are both totally
nonnegative and are isotropic for the form Ω.

We pause to acknowledge that the signs in Equation (5) are annoying. They are necessary
if we want our isotropic subspaces to have nonnegative Plücker coordinates. If we are willing
to sacrifice this, there is a simpler sign choice. Let D be the (2n) × (2n) diagonal matrix with
Dii = Dĩ ĩ = (−1)i−1. Conjugating Ω by D produces the simpler form

ΩD((x1, x1̃, . . . , xn, xñ), (y1, y1̃, . . . , yn, yñ)) =

n∑
i=1

(xiỹi − xĩyi) +

n∑
j=1

(xj̃yj+1 − xj+1yj̃). (6)

with indices cyclic modulo n. The kernel of ΩD is spanned by the vectors (1, 0, 1, 0, · · · , 1, 0) and

(0, 1, 0, 1, · · · , 0, 1); multiplication by D carries IGΩ(n+1, 2n) to IGΩD

(n+1, 2n). The reader may

like to check that the rows of the matrices X and X̃ from Example 1.4 are isotropic for Ω. The
reader may also enjoy computing the prettier, but not totally positive, matrices XD and X̃D and
checking that their rows are isotropic for ΩD.

We now describe coordinates for an affine patch in IGΩ(n+ 1, 2n), and then describe how they
can be used to give explicit formulas for our isotropic subspace in terms of the L matrix and the R
matrix. As will be a trend, the formulas are slightly nicer for ΩD than for Ω.

Let V be an isotropic n + 1 plane for Ω. We will show (Lemma 4.1) that ∆[n],{1̃}(V ) =

∆[n],{2̃}(V ) = · · · = ∆[n],{ñ}(V ) and ∆{1},[ñ](V ) = ∆{2},[ñ](V ) = · · · = ∆{n},[ñ](V ). Let Unot shorted

be the open set where the ∆[n],{k̃} are nonzero and Uconnected be the open set where the ∆{1},[ñ]
are nonzero. The totally nonnegative points of Unot shorted correspond to planar electrical networks;
the totally nonnegative points of Uconnected correspond to cactus networks where the underlying
electrical network is connected; see Lemma 4.2.

The spaces Unot shorted and Uconnected are Schubert cells of maximal dimension in IGΩ(n +

1, 2n) ∼= LG(n− 1, 2n− 2), and hence isomorphic to R(
n
2). We now describe explicit isomorphisms

between these spaces and the space of symmetric n× n matrices with row and column sum 0.
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Theorem 1.6. Every subspace in Unot shorted can be written as the row span of a matrix of the
form 

0 1 0 1 · · · 0 1
1 S11 0 S12 · · · 0 S1n

0 S21 1 S22 · · · 0 S2n

...
...

... · · ·
...

...
0 Sn1 0 Sn2 · · · 1 Snn

D.

The matrix S is unique up to adding a multiple of (1, 1, . . . , 1) to each row, and the matrix
S1n − S11 S2n − S21 · · · Snn − Sn1

S11 − S12 S21 − S22 · · · Sn1 − Sn2

...
... · · ·

...
S1(n−1) − S1n S2(n−1) − S2n · · · Sn(n−1) − Snn


is a symmetric matrix whose rows and columns add to 0. Conversely, given a symmetric matrix
whose rows and columns add to 0, we get a unique point of Unot shorted in this manner.

Similarly, subspaces in Uconnected are expressible as the row span of a matrix of the form
1 0 1 0 · · · 1 0
T11 1 T12 0 · · · T1n 0
T21 0 T22 1 · · · T2n 0
...

...
...

... · · ·
...

...
Tn1 0 Tn2 0 · · · Tnn 1

D (7)

where 
T12 − T11 T22 − T21 · · · Tn2 − Tn1

T13 − T12 T23 − T22 · · · Tn3 − Tn2

...
... · · ·

...
T11 − T1n T21 − T2n · · · Tn1 − Tnn


is symmetric with rows and columns adding to 0.

Example 1.7. In our running example,

XD =


0 a+ b+ c 0 a+ b+ c 0 a+ b+ c
1 ab

a+b+c 0 0 0 − ac
a+b+c

0 − ab
a+b+c 1 bc

a+b+c 0 0

0 0 0 − bc
a+b+c 1 ac

a+b+c

 .

Rescaling the top row to (1, 0, 1, 0, 1, 0) does not change the span of the rows, so the matrix S is

1
a+b+c

[
ab 0 −ac
−ab bc 0
0 −bc ac

]
. The corresponding symmetric matrix is

1

a+ b+ c

−ab− ac ab ac
ab −ab− bc bc
ac bc −ac− bc

 .
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Similarly,

X̃D =


abc 0 abc 0 abc 0
1
a 1 − 1

b 0 0 0
0 0 1

b 1 − 1
c 0

− 1
a 0 0 0 1

c 1

 .

So the matrix T is

 1
a − 1

b 0

0
1
b − 1

c

− 1
a 0

1
c

 and the corresponding symmetric matrix is

−
1
a −

1
b

1
b

1
a

1
b − 1

b −
1
c

1
c

1
a

1
c − 1

a −
1
c

 .

Using these isomorphisms, we can describe explicitly how to turn response matrices and effective
resistances into points of the Grassmannian.

Theorem 1.8. Let G be a planar electrical network with response matrix L. The isotropic plane
in Unot shorted corresponding to G corresponds to the symmetric matrix L.

For example, the first displayed symmetric matrix in Example 1.7 is our response matrix L.

Theorem 1.9. Let G be a connected cactus network with effective resistance matrix R. Set L∗
ij =

1
2 (Rij+Ri+1,j+1−Ri+1,j−Ri,j+1) (indices are periodic modulo n). The isotropic plane in Uconnected

corresponding to G corresponds to the symmetric matrix L∗.

For example, the second displayed symmetric matrix in Example 1.7 is L∗ with respect to our
effective resistance matrix R.

The authors’ original goal was to understand the relation between the appearance of Gr(n−1, 2n)
in Lam’s work and the appearance of the orthogonal Grassmannian OG(n − 1, 2n) in the work of
Henriques and the third author [5]. We have not yet realized this goal, but we believe there are
enough ideas in this paper to be worth recording; we hope to return to our original goal in future
work.
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2 Background

2.1 Cactus networks

Let D be a disk with n points labeled 1, 2, . . . , n in clockwise order around the boundary and let
σ be a non-crossing partition of [n]. A cactus with shape σ is the topological space D/σ obtained
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Figure 2: A cactus network G (solid) and its medial graph (dashed).

by gluing the points i that are in the same block of σ. D/σ consists of |σ̃| disks glued together.
A cactus network with shape σ is a graph G embedded in D/σ with boundary vertices [n], along
with a function c : E → R>0 called conductance. A cactus network decomposes into a union of |σ̃|
planar electrical networks. If σ is the partition {1}, {2}, . . . , {n} consisting of all singletons, then
D/σ = D and G is a planar electrical network. These networks have been studied extensively, see
e.g. [2, 3, 10]. Figure 2 shows a cactus network with shape {1}, {2, 3}, {4, 6}, {5}. It decomposes
into a union of 3 planar electrical networks, corresponding to the blocks {1̃, 3̃, 6̃}, {2̃}, {4̃, 5̃} of σ̃.

The medial graph G× of a cactus network G is defined as follows. Place vertices t1, . . . , t2n
clockwise around the boundary of the cactus such that i is between t2i−1 and t2i, and a vertex te
at the midpoint of each edge e of G. For e, e′ ∈ E, draw an edge between te and te′ in G× if there
is a face of G around which e and e′ occur consecutively. Draw an edge from t2i−1 (respectively
t2i) to te if e is the first (respectively last) edge in clockwise order around the boundary face of G
containing t2i−1 (respectively t2i). If i is an isolated vertex, draw an edge between t2i−1 and t2i.

Note that each boundary vertex has degree 1 and each interior vertex te has degree 4. A medial
strand in G× is a path in G× that starts at a boundary vertex ti, follows the only edge incident to
it, and then at each interior vertex of degree 4, follows the edge opposite to the one used to arrive
at it. There are n medial strands, and they give rise to a matching τ(G) on [2n]:

τ(G) := {{i, j} ⊂ [2n] : there is a medial strand in G× from ti to tj}.

The matching τ(G) is called themedial pairing associated with G. Let Pn denote the set of matchings
on [2n].

Remark 2.1. Every τ ∈ Pn is the medial pairing for some cactus network G. Some of these
matchings are not medial pairings for planar networks. For example {4, 5} could not be a part of
τ(G) for any planar network G, but we see in Figure 2 that this can happen in a cactus network.
Thus, cactus networks can be thought of as a natural generalization of circular planar networks
where all medial pairings are allowed.
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cb
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Figure 3: The Y-∆ move.

A graph G embedded in a cactus is said to be minimal if the medial strands in G× have no self
intersections and there are no bigons (two medial strands that intersect each other twice).

Example 2.2. The cactus network in Figure 2 is minimal and has medial pairing

{{1, 7}, {2, 6}, {3, 12}, {4, 5}, {8, 10}, {9, 11}}.

2.2 The space of cactus networks.

There is a local move on cactus networks called the Y-∆ move (see Figure 3). Two graphs G1 and
G2 embedded in a cactus are topologically equivalent if there is a sequence of Y-∆ moves such that
G1 7→ G2.

Proposition 2.3 ([14, Proposition 4.2]). The function assigning to each cactus network with bound-
ary vertices [n] its medial pairing gives a bijection

{Minimal cactus graphs}/topological equivalence ∼−→ Pn.

Let τ ∈ Pn. For a minimal graph G embedded in a cactus with τ(G) = τ , let

RG := {c : E → R>0},

be the space of minimal cactus networks with underlying graph G. A Y-∆ move G1 7→ G2 induces
a homeomorphism RG1

→ RG2
given in the notation of Figure 3 by

A =
bc

a+ b+ c
, B =

ac

a+ b+ c
, C =

ab

a+ b+ c
.

Two minimal cactus networks (G1, c1) and (G2, c2) are said to be electrically equivalent if there is
a sequence of Y-∆ moves (G1, c1) 7→ (G2, c2). Gluing the RG for all minimal G with τ(G) = τ using
the bijections induced by Y-∆ moves, we obtain the space Rτ parameterizing electrical equivalence
classes of minimal cactus networks with medial pairing τ . Let Rn denote the space of electrical
equivalence classes of minimal cactus networks with boundary vertices [n]. By Proposition 2.3, Rn

has the stratification
Rn =

⊔
τ∈Pn

Rτ .

Lam [14] uses the grove measurements Λσ to identify Rn with a closed (in the Euclidean topol-
ogy) subset of RPCatn−1. We use the induced topology to make Rn a topological space , which we
call the space of cactus networks.

9



2.3 Response and effective resistance matrices

Suppose G is a cactus network with shape σ. Let Γ be obtained from G be relabeling the boundary
vertices by blocks of σ. This means that vertices identified by σ have only one label. We call
the vertices of Γ corresponding to blocks of σ boundary vertices. The Laplacian on Γ is the linear
operator L : Rvertices of Γ → Rvertices of Γ defined by

(Lf)(u) :=
∑

edges {u,v}

c({u, v})(f(u)− f(v))

where the sum is over all vertices u that are incident to v. In the standard basis of Rvertices of Γ, L
is represented by the symmetric matrix

Lu,v =


∑

edges {v,v′} c({v, v′}) if u = v,

−c({u, v}) if u ̸= v and {u, v} is an edge of Γ,

0 if u ̸= v and {u, v} is not an edge of Γ.

A function f on the vertices of Γ is called a harmonic function if (Lf)(u) = 0 for all non-
boundary vertices u of Γ. Given a function F on the boundary vertices of Γ, the Dirichlet problem
asks for a harmonic function f that agrees with F on the boundary vertices. The Dirichlet problem
has a unique solution and the function f is called the harmonic extension of F .

Now we can define the electrical terminology used in the introduction. A voltage V on G is a
harmonic function. The current J associated to V is a function on the directed edges of Γ defined
by J(u, v) := c({u, v})(V (v) − V (u)), where (u, v) denotes an edge of Γ directed from vertex u
to vertex v. Note that J is antisymmetric: J(v, u) = −J(u, v). The quantity (LV )(u) is the net
current flowing into the vertex u when the vertices of Γ are held at voltages given by V . For
a boundary vertex v of Γ, let Ju :=

∑
v incident to u J(u, v) denote the total current flowing out

vertex u. Define L : Rboundary vertices of Γ → Rboundary vertices of Γ to be the map that sends a vector
(Vu) of voltages of boundary vertices to the vector (Ju) of currents flowing out of each boundary
vertex when the vertices are held at the voltages determined by the harmonic extension V of (Vu).
This map is linear and the matrix L is called the response matrix of Γ. The response matrix is
symmetric, has rows and columns that add up to zero, and can be explicitly constructed as the
Schur complement of the Laplacian with respect to the square submatrix of L corresponding to the
non-boundary vertices of Γ multiplied by −1.

We now define the effective resistance matrix R of a connected cactus network G. For boundary
vertices i, j of G, let u, v denote the corresponding vertices of Γ. Let V denote a solution to
LV = eu − ev, where eu, ev are standard basis vectors of Rboundary vertices of Γ. Note that although
L is not invertible, since Γ is connected, the cokernel of L is spanned by the vector (1, 1, . . . , 1)
and therefore ev − eu ∈ (1, 1, . . . , 1)⊥ is in the image of L. Define Rij := V (v)− V (u), the voltage
difference between v and u so that one unit of current flows from u to v. Although V is only defined
modulo an additive constant, Rij is well defined. Notice that R is a symmetric matrix with zeroes
on the diagonal.

Kirchhoff’s formulas (1) and (2) express the matrices L and R in terms of ratios of grove
measurements.

Example 2.4. For the cactus network G in Figure 2, Γ is a planar electrical network with four
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boundary vertices {1}, {2, 3}, {4, 6}, {5} and no non-boundary vertices. We have

−L = L =


−a− c c a 0

c −c 0 0
a 0 −a− b b
0 0 b −b

 .

Let us compute R25. We have u = {2, 3}, v = {5}. The voltage V = (0,− 1
c ,

1
a ,

a+b
ab ) satisfies

LV = ev − eu, so R25 = 1
a + 1

b + 1
c . We have Λ{1,2,3,4,5,6} = abc and there are three non-crossing

partitions concordant with {2, 5} that have nonzero contribution to the sum in (3):

Λ{2,3},{1,4,5,6} = ab, Λ{1,2,3},{4,5,6} = bc, Λ{1,2,3,4,6},{5} = ac.

Therefore we get

Λ{2,3},{1,4,5,6} + Λ{1,2,3},{4,5,6} + Λ{1,2,3,4,6},{5}

Λ{1,2,3,4,5,6}
=

ab+ bc+ ac

abc
=

1

a
+

1

b
+

1

c
= R25,

verifying (3).

2.4 Lam’s map T
Let V be the vector space with basis e1, e1̃, . . . , en, eñ. For I ⊔ Ĩ ⊆ [n]⊔ [ñ], we put eI,Ĩ =

∧
i∈I⊔Ĩ ei,

where the wedge product is taken in the order induced on I ⊔ Ĩ from the total order 1 < 1̃ < 2 <
2̃ < · · · < n < ñ. Given a Kreweras pair (σ, σ̃), let

fσ =
∑

(I,Ĩ) concordant with (σ,σ̃)

eI,Ĩ . (8)

Lam [14] defines a map T : RCatn →
∧n+1

V by (Λσ) 7→
∑

σ Λσfσ. Since V ∼= R2n, we can

identify P(
∧n+1

V ) and RP(
2n

n+1)−1 using the basis eI,Ĩ . From here on we will use these spaces
interchangeably.

It is easy to check that T is injective [14, Proposition 5.19]. So the projectivization of the image
of T , or P(T (RCatn)) is a linear subspace isomorphic to RPCatn−1. We call this subspace Hn.

Theorem 2.5 ([14]). Lam’s map induces a map from Rn to P(
∧n+1

V ) taking a cactus network
with grove measurements Λσ to [

∑
σ Λσfσ]. This map is a homeomorphism of Rn with Xn := Hn ∩

Gr≥0(n+ 1, 2n)⊆RP(
2n

n+1)−1.

Note that Lam calls Xn the space of cactus networks. We reserve this name for Rn, even though
the spaces are homeomorphic.

2.5 Duality and cyclic symmetry

The dual cactus network G∗ associated to G is defined as follows. Since the medial graph G× is
disjoint from [n], we can identify it with its preimage in D under the quotient map D→ D/σ. D\G×

consists of two types of regions corresponding to vertices of G and faces of G. We place a vertex
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Figure 4: The dual of the cactus network in Figure 2.

of G∗ in every region corresponding to a face. For every vertex te of G×, we connect the two faces
incident to e by a dual edge e∗ in G∗ and assign it conductance c∗(e∗) = 1

c(e) . We get a partition

σ∗ whose parts consist of ĩ that are incident to the same face of G∗. Passing to the quotient D/σ∗,
we get the dual cactus network G∗ embedded in D/σ∗ with boundary vertices [ñ]. Let s denote
the operation of cyclically shifting the labels of the boundary points 1 < 1̃ < 2 < 2̃ · · · < n < ñ
clockwise by one step (so that s(1) = ñ, s(1̃) = 1 etc). Applying s, G∗ becomes a cactus network
in D/s(σ∗) with boundary vertices [n].

Example 2.6. Figure 4 shows the dual cactus network of the cactus network in Figure 2.

Remark 2.7. σ∗ is not the same as σ̃. For example, for the planar electrical network on [2] with
an edge between 1 and 2, we have σ = {1}, {2}, σ̃ = {1̃, 2̃} and σ∗ = {1̃}, {2̃}.

A grove F in G corresponds to a dual grove F ∗ in G∗ which consists of duals of edges not in

F . We have w(F ) = w(F ∗)
∏

e edge of G c(e) and σ(F ∗) = s(σ̃(F )). Therefore in RPCatn−1, duality
is the homeomorphism given by Λs(σ̃) 7→ Λσ. Therefore duality is a continuous symmetry of Rn,
rather than merely piecewise continuous as suggested by the definition.

We now explain how Lam’s map relates to duality. Let Σ : V → V denote the linear operator
(e1, e1̃, . . . , en, eñ) 7→ ((−1)neñ, e1, e1̃, . . . , eñ−1

, en). We define the cyclic shift operator on Gr≥0(n+
1, 2n) mapping X to X · Σ.

Lemma 2.8. Under Lam’s map, duality becomes the cyclic shift operator.

Proof. It follows from
(∧n+1

Σ
)
fσ = fs(σ̃).

This is similar to [4, Theorem 3.4] which says that Kramers–Wannier duality for the Ising model
becomes the cyclic shift operator.

Let L∗ denote the response matrix of G∗. We have the following relation between L∗ and R.

Proposition 2.9 ([10, Proposition 2.9]). L∗
ij =

1
2 (Rij +Ri+1,j+1 −Ri+1,j −Ri,j+1).

12



3 Proof of Theorem 1.5

Our goal is to show that IGΩ(n + 1, 2n) is the intersection, inside RP(
2n

n+1)−1, of Gr(n + 1, 2n)

with Hn. We will first show that there is a linear space K in R(
2n

n+1) such that IGΩ(n + 1, 2n) =
Gr(n+ 1, 2n) ∩ P(K).

Ω is a skew symmetric pairing V × V → R. We use Ω to induce a linear map κ :
∧n+1

(V ) →∧n−1
(V ), defined as follows on simple tensors:

κ(v1 ∧ v2 ∧ · · · ∧ vn+1) =
∑

1≤p<q≤n+1

(−1)p+q−1Ω(vp, vq) (v1 ∧ · · · ∧ v̂p ∧ · · · v̂q ∧ · · · ∧ vn+1) ,

where the hats indicate omitted vectors. We set K = Kerκ.

Lemma 3.1. Let v1∧· · ·∧vn+1 be a nonzero simple tensor in
∧n+1

V . We have κ(v1∧· · ·∧vn+1) = 0
if and only if Span(v1, v2, . . . , vn+1) is isotropic with respect to Ω.

Proof. The condition that v1 ∧ · · · ∧ vn+1 ̸= 0 is equivalent to imposing that the vi are linearly
independent in V . We deduce that the wedges v1 ∧ · · · ∧ v̂p ∧ · · · v̂q ∧ · · · ∧ vn+1 are linearly

independent in
∧n−1

V . Thus, κ(v1 ∧ · · · ∧ vn+1) = 0 if and only if Ω(vp, vq) = 0 for all p and q;
this is the same as saying that Span(v1, v2, . . . , vn+1) is Ω-isotropic.

Corollary 3.2. IGΩ(n+ 1, 2n) = Gr(n+ 1, 2n) ∩ P(K)

Proof. This follows immediately from the previous lemma and the fact that Gr(n + 1, 2n) is the

projectivization (in P
∧n+1

V ) of the space of simple tensors.

Next we want to check that Hn, the image of Lam’s map, is contained in K. We will do this
by exploring the relationship of fσ and a set of vectors {vk} in V . Let (σ, σ̃) be a Kreweras pair
with blocks B1, B2, . . . , Bn+1. For each block Bk, we define vk as follows: If Bk ⊆ [n], then
vk =

∑
b∈Bk

(−1)beb; if Bk ⊆ [ñ] then vk =
∑

b̃∈Bk
(−1)beb̃. We will need two lemmas about these

vectors.

Lemma 3.3. For a Kreweras pair (σ, σ̃), Span(v1, v2, . . . , vn+1) is isotropic for Ω.

Proof. It is enough to check that Ω(vi, vj) = 0 for any i and j. This is obvious unless there is some
b ∈ Bi and c ∈ Bj with Ω(eb, ec) ̸= 0, so we may assume that such a pair (b, c) exists. Without loss
of generality, let Bi ⊆ [n] and Bj ⊆ [ñ]. There are two cases:

1. There are some p < q such that p ∈ Bi, p̃ ∈ Bj , q̃ − 1 ∈ Bj and q ∈ Bi.

2. There are some p ≤ q such that p̃− 1 ∈ Bj , p ∈ Bi, q ∈ Bi and q̃ ∈ Bj .

In both cases, there are no adjacent pairs of elements in Bi and Bj other than the listed ones. In
the first case, if p = q = 1, then

Ω(vi, vj) = (−1)p+p + (−1)n+1+n = 0.

Otherwise,
Ω(vi, vj) = (−1)p+p + (−1)q+(q−1) = 0.
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In the second case, if p = 1 then

Ω(vi, vj) = (−1)q+q + (−1)n+1+n = 0.

Otherwise,
Ω(vi, vj) = (−1)p+(p−1) + (−1)q+q = 0.

Lemma 3.4. For a Kreweras pair (σ, σ̃), fσ = ±v1 ∧ v2 ∧ · · · ∧ vn+1.

Proof. It is clear that, when we expand out the wedge product, we will get a sum
∑
±eI,Ĩ , running

over all pairs (I, Ĩ) concordant with (σ, σ̃). The challenge is to check that all the eI,Ĩ come with
the same sign.

It is clearly enough to check that eI,Ĩ and eJ,J̃ come with the same sign where I ⊔ Ĩ and J ⊔ J̃
differ by changing a single element. Suppose that p and q are elements of the block Bk, and that
J ⊔ J̃ is obtained from I ⊔ Ĩ by replacing p with q. Without loss of generality, we may assume that
Bk ⊆ [n], that p < q and that p and q are consecutive elements of Bk.

There are two places where we get sign factors comparing the coefficients of eI,Ĩ and eJ,J̃ . The

first is that ep and eq come with coefficients (−1)p and (−1)q, so we pick up a factor of (−1)p−q

from there.
The second place is that we start by expanding the wedge product v1 ∧ v2 ∧ · · · ∧ vn+1 and then

must reorder each term using the order 1 < 1̃ < 2 < 2̃ < · · · < n < ñ. So we need to work out
how many of the other factors er have r between p and q in this order; in other words, how many

factors have r ∈ {p̃, p+ 1, p̃+ 1, · · · , q − 1, q̃ − 1}. Each block other than Bk is either contained in

{p̃, p+1, p̃+ 1, · · · , q−1, q̃ − 1}, or else is disjoint from this interval. So we pick up a factor of (−1)ℓ
where ℓ is the number of blocks in this interval. In short, we need to show that ℓ ≡ q − p mod 2.

Define a non-crossing partition (τ, τ̃) of {p, p̃, p+1, p̃+ 1, · · · , q− 1, q̃ − 1} by using the ℓ blocks
from (σ, σ̃), plus one more singleton block {p}. Then (τ, τ̃) is a Kreweras pair for this 2(q−p) element
set. Therefore, ℓ+ 1 = q − p+ 1 and we deduce that ℓ = q − p. In particular, ℓ ≡ q − p mod 2.

Corollary 3.5. Hn ⊆ K

Proof. Taken together, Lemmas 3.1, 3.3, and 3.4 imply that κ(fσ) = 0. Since Hn is the set of linear
combinations of the fσ’s, we have Hn ⊆ K.

We are now finally ready to prove our main theorem.

Proof of Theorem 1.5. From Corollary 3.5, we know that Hn ⊆K. By [16, Example 4], the dimen-
sion of K is Catn. This means Hn =K. From Corollary 3.2, we have that IGΩ(n+1, 2n) = Gr(n+
1, 2n)∩P(K) = Gr(n+1, 2n)∩Hn. Thus, we conclude, using Theorem 2.5, that IGΩ

≥0(n+1, 2n) =
Xn.

Remark 3.6. The row span of XD is the space of pairs of harmonic and conjugate harmonic
functions on the cactus network G. This space is identified with the space of discrete holomorphic
functions (that is functions in the kernel of a Kasteleyn matrix) on a dimer model associated to
G by the generalized Temperley’s bijection of Kenyon, Propp and Wilson [9]. However the kernel
of this Kasteleyn matrix constructed using the Kasteleyn sign in [8, Section 3.1] is not totally
nonnegative because it does not satisfy the Kasteleyn sign condition at boundary faces. We can
resolve this by modifying the Kasteleyn sign using a gauge transformation at boundary vertices,
which corresponds to multiplying by the diagonal matrix D.
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4 Unot shorted and Uconnected

Schubert charts for Lagrangian Grassmannians are well understood, but the details for a degenerate
form such as Ω or ΩD are not that standard; we work them out here. We recall the linear space
K from Section 3; the image of Thomas Lam’s map, spanned by the vectors fσ. We also reuse the
notations eI,Ĩ and V from that section.

We begin by proving a useful lemma:

Lemma 4.1. For v =
∑

σ Λσfσ in K, we have ∆[n],{1̃}(v) = ∆[n],{2̃}(v) = · · · = ∆[n],{ñ}(v) =

Λ{1},{2},...,{n} and ∆{1},[ñ](v) = ∆{2},[ñ](v) = · · · = ∆{n},[ñ](v) = Λ{1,2,...,n}.

Proof. In the sum (8) defining fσ, all the terms eI,Ĩ have #(I) equal to the number of blocks of σ

(since I and σ are concordant). Thus, terms of the form e[n], {k̃} can only occur if σ is the partition

{1}, {2}, . . . , {n}. Since all the e[n], {k̃} occur with coefficient 1 in f{1},{2},...,{n}, they all occur with

the same coefficient Λ{1},{2},...,{n} in v. A similar argument applies to e{n},[ñ].

Recall that Unot shorted is the open set in K where the ∆[n],{k̃} are nonzero and Uconnected is the

open set in K where the ∆{1},[ñ] are nonzero. Recall also the operation s and the cyclic shift Σ from

Section 2.5. Notice that s([ñ]) = [n] and s({k}) = {k̃ − 1}, so Σ maps Uconnected to Unot shorted.
We next prove that the names Unot shorted and Uconnected are appropriate.

Lemma 4.2. The totally nonnegative points of Unot shorted correspond to planar electrical networks
and those of Uconnected correspond to cactus networks where the underlying graph is connected.

Proof. The totally nonnegative points of Unot shorted correspond to cactus networks that have
Λ{1},{2},...,{n} > 0. Therefore the cactus network has a grove with each vertex in [n] in a dif-
ferent component, which implies that no two vertices are shorted. The totally nonnegative points
of Uconnected correspond to cactus networks with Λ{1,2,...,n} > 0. This means that the cactus network
has a spanning tree and therefore it is connected.

We are now ready to prove Theorem 1.6, which gives a matrix form for elements of Unot shorted

and Uconnected.

Proof of Theorem 1.6. We will first verify the form for matrices in Unot shorted that is claimed in
Theorem 1.6; the analogous claim for matrics in Uconnected will then follow from cyclic symmetry.

Let X be an Ω-isotropic subspace in Unot shorted and let M be an (n+ 1)× (2n) matrix so that
the rows of MD span X. So the rows of M are isotropic for ΩD.

Since the Plücker coordinates ∆[n], {k̃}(M) are nonzero, the columns indexed by [n] are linearly

independent and we can normalize them to be standard basis vectors as in Theorem 1.6. This
fixes M up to left multiplication by nonsingular matrices of the form

[ ∗ 0
∗ Idn

]
. Since ∆[n], {1̃}(M) =

∆[n], {2̃}(M) = · · · = ∆[n], {ñ}(M) by Lemma 4.1, the top row of M must then be must be a scalar

multiple of (0, 1, 0, 1, · · · ), and we can fix that scalar to be 1. We have now fixed M up to left
multiplication by matrices of the form

[
1 0
∗ Idn

]
or, in other words, up to adding multiples of the top
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row to the other rows. So far, we know that M is of the form
0 1 0 1 · · · 0 1
1 S11 0 S12 · · · 0 S1n

0 S21 1 S22 · · · 0 S2n

...
...

...
... · · ·

...
...

0 Sn1 0 Sn2 · · · 1 Snn

 . (9)

and that the matrix S is unique up to adding a multiple of (1, 1, . . . , 1) to each row. It remains to
show that S has the required symmetry property.

We now impose the condition that the rows of M are ΩD isotropic. The first row is in the kernel
of ΩD, so this is automatic. Look at the (p+ 1)-st and the (q + 1)-st row, for p < q. We compute
that the pairing of these rows under ΩD is Spq − Sp(q−1) + Sq(p−1) − Sqp. We can reorder this as
Sp(q−1) − Spq = Sq(p−1) − Sqp. In other words, the rows of M are ΩD isotropic if and only if the
matrix Si(j−1) − Sij is symmetric, as required.

Suppose X is an Ω-isotropic subspace in Uconnected. X · Σ is then an Ω-isotropic subspace in
Unot shorted, so it can be represented by a matrix MD, where M has the form (9). DΣ−1D−1 is the
linear transformation (e1, e1̃, e2, e2̃, . . . , en, eñ) 7→ (e1̃,−e2, e2̃,−e3, . . . , eñ,−e1), so we get

MDΣ−1 =


−1 0 −1 0 · · · −1 0
T11 1 T12 0 · · · T1n 0
T21 0 T22 1 · · · T2n 0
...

...
...

... · · ·
...

...
Tn1 0 Tn2 0 · · · Tnn 1

D,

where Tij = −Si(j−1).

We can now prove Theorems 1.8 and 1.9, which tell us how the matrices from Theorem 1.6
relate to the response and effective resistance matrices.

Proof of Theorem 1.8. Let G be a planar electrical network with response matrix L. By Lemma 4.2,
Lam’s map associates to G a totally nonnegative point in Unot shorted. By Theorem 1.6, this point
is the row span of a matrix MD, where M is of the form (9). We have for i ̸= j, ∆[n],{ĩ}(MD) =

(−1)(
n
2)+1 and ∆

[n]\{j},{̃i−1,̃i}(MD) = (−1)(
n
2)+1(Sj(i−1) − Sji) (with indices periodic modulo n),

therefore using (4), we get Sj(i−1) − Sji = Lij . Since all non-diagonal entries of the two matrices
are the same and they both have rows that sum to 0, the matrices are the same.

Proof of Theorem 1.9. Suppose G is a connected cactus network with effective resistance matrix
R. Using Lemma 4.2, we have that Lam’s map associates to G a totally nonnegative point X in
Uconnected. Therefore Lam’s map associates to the dual cactus network G∗ a totally nonnegative
point in Unot shorted, which by Lemma 2.8 is X · Σ. By Theorem 1.8 and Proposition 2.9, X · Σ is
represented by a matrix MD, where M has the form (9) with Tj(i+1)−Tji = Sj(i−1)−Sji = L∗

ij .
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5 Comparison other work on Lagrangian Grassmannians.

We aware of two earlier studies of total positivity for Lagrangian Grassmannians. In this section,
we explain why we think this work is not very close to ours, but suggest that there might be room
for a common generalization. Since this section is an overview, we will omit many proofs.

5.1 Work of Karpman

We first discuss the work of Karpman [6, 7]. Karpman studies totally nonnegative spaces in R2m

which are isotropic with respect to the non-degenerate skew form

⟨ei, ej⟩ =

{
(−1)j i+ j = 2m+ 1

0 otherwise.

Let’s denote this space LGKarp(m, 2m).
Recall that our space of electrical networks is contained in IGΩ(n+ 1, 2n) ∼= LG(n− 1, 2n− 2).

So one might imagine relating IGΩ(n + 1, 2n) either to LGKarp(n − 1, 2n − 2) or, perhaps, to
LGKarp(n, 2n). In either case, we do not see such a relationship.

The space of electrical networks has an n-fold rotational symmetry. In contrast, LGKarp(m, 2m)
does not have a rotational symmetry. For example, LGKarp(2, 4) has three codimension one strata,
two of which are triangles and one of which is a quadrilateral, so they cannot be permuted by a
3-fold symmetry. By contrast, the three codimension-one strata of IGΩ(4, 6) are all quadrilaterals,
and are permuted cyclically by the rotational symmetry of electrical networks.

Moreover, the enumeration of cells does not match. Both LGKarp(n−1, 2n−2) and IGΩ(n+1, 2n)
have dimension

(
n
2

)
and n codimension-1 cells. However (for n ≥ 3), LGKarp(n − 1, 2n − 2) has(

n+1
2

)
− 1 codimension 2 cells and IGΩ(n+ 1, 2n) has

(
n+1
2

)
codimension 2 cells.

5.2 Gaussoids

Boege, D’Ali, Kahle and Sturmfels introduced the study of Gaussoids [1], motivated by problems in
algebraic statistics. This work also involves considering subspaces of the Lagrangian Grassmannian
whose Plücker coordinates obey a sign condition. However, we will argue in this section that the
sign condition they consider is very different from either Karpman’s or ours, and is likely not related
to the theory of total positivity at all.

It is common in statistics to study m quantities and summarize the correlations between them
in a symmetric matrix known as the covariance matrix. Boege, D’Ali, Kahle and Sturmfels embed
m×m symmetric matrices in G(m, 2m) by sending the symmetric matrix Σ to the row span of the
m × (2m) matrix [Id Σ]. This m-plane is Lagrangian for the skew form

[
0 Idm

−Idm 0

]
. We’d rather

choose an embedding which is Lagrangian for Karpman’s form. In order to do this, we define an
m× 2m matrix A(Σ) by

A(Σ)ij =


(−1)i−1 i+ j = m+ 1

0 j ≤ m, i+ j ̸= m+ 1

σi(j−m) j ≥ m

.
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We depict the example m = 4 below.

A(Σ) =


0 0 0 1 σ11 σ12 σ13 σ14

0 0 −1 0 σ21 σ22 σ23 σ24

0 1 0 0 σ31 σ32 σ33 σ34

−1 0 0 0 σ41 σ42 σ43 σ44


Boege et al impose that Σ is positive definite, meaning that all of its principal minors are

nonnegative. We now describe the corresponding condition in terms of the Plücker coordinates
∆I(A(Σ)). For I ⊂ [2m], set I = {2m + 1 − i : i ∈ [2m] \ I}. The matrix Σ is positive definite
if and only if ∆I(A(Σ)) > 0 for all I such that I = I. (These are the face labels which occur

on the “spine” in the sense of [7].) This condition forms a dense open subset of LGKarp
≥0 : a cell

of Karpman’s space indexed by bounded affine permutation f obeys this condition if and only if
f({1, 2, . . . ,m}) = {m+ 1,m+ 2, . . . , 2m}. So, a dense open set in LGKarp(m, 2m)≥0 gives rise to
Gaussoids, with certain additional positivity conditions coming from the other Plücker coordinates.

There is a notion of a “positive Gaussoid”, motivated by ideas from algebraic statistics. How-
ever, we will see that this notion of positivity is not the one obtained by asking that the Plücker
coordinates of A(Σ) be nonnegative, nor can this be fixed by any simple rearrangement of columns
or signs.

Let K ⊂ [m] and let i and j be distinct elements of [m] \ K. The almost principal minor
aij|K is the minor of Σ whose rows are indexed by {i} ∪ K and whose columns are indexed by
{j} ∪ K, where the the elements of K are listed after i and after j, and K is ordered the same
way in both cases. For example, a13|2 = σ13σ22 − σ12σ23. A Gaussoid is positive if all its almost
principal minors are nonnegative. We note that this is a different sign condition than the one we
get by imposing that ∆1267(A(Σ)) > 0 (here we take m = 4, to match our example above); we have
∆1267 = σ12σ33 − σ13σ22.

This is not a minor technicality; we will now show that there is no way to embed symmetric
matrices into the Grassmannian such that the positivity conditions from the positive Grassmannian
correspond to the positivity conditions from Gaussoids. More precisely, let b1, b2, . . . , b2m be some
permutation of [2m] and let δi and ϵij be elements of {±1}, indexed by 1 ≤ i, j ≤ m. Given a
symmetric matrix Σ, form a linear space

B(Σ)ij =


δi j = bi

0 j ∈ {b1, b2, . . . , bm} \ {bi}
ϵikσik j = bk+m

In other words, the columns {b1, b2, . . . , bm} contain a signed permutation matrix, with the order
of (b1, . . . , bm) encoding the permutation and the δi encoding the signs. The remaining columns
{bm+1, bm+2, . . . , b2m} contain ± the entries of Σ, with the columns reordered according to the order
of (bm+1, bm+2, . . . , b2m) and with signs given by the ϵij . (We don’t need to consider reordering the
rows of Σ, as we could always put them back in order by left multiplying by a permutation matrix.)

Theorem 5.1. For m ≥ 3, there is no choice of b1, b2, . . . , b2m, δi and ϵij such that the principal
and almost principal minors occur as a subset of the Plücker coordinates of Σ.

Proof. Start with some choice of b1, b2, . . . , b2m, δi and ϵij ; we show that we cannot obtain all of
the principal and almost principal minors with their correct signs. To begin with, consider the 2×2
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principal minor σaaσbb − σabσba. The condition that σaaσbb appears with the opposite sign from
σabσba implies that ϵaaϵbb = ϵabϵba. Similarly, from the almost principal minor, σabσcc− σacσcb, we
obtain that ϵabϵcc = ϵacϵcb.

These relations force there to be some signs α1, . . . , αm, β1, . . . , βm in {±1} such that ϵab =
αaβb. Then we can multiply row a by αa, which will preserve all Plücker coordinates up to a global
sign, so we can assume that α1 = · · · = αm = 1. In short, we have reduced to the situation that the
columns of B(Σ) are, in some order, ± the columns of Σ and ± the standard basis vectors, where
the signs of the columns are given by βj .

We now look at the 1× 1 minors of Σ. Every 1× 1 minor is either principal or almost principal,
so our condition is that each σij occurs with positive sign as a minor of B(Σ). Fix a row i and
consider the condition that σij1 and σij2 occur with the same sign. By switching the names j1 and
j2, we may assume that bj1 < bj2 . We have

∆b1b2···bi−1bi+1···bmbja
= ±σija ,

where the sign is from (1) the partial permutation matrix in columns {b1, b2, · · · bi−1, bi+1, · · · , bm},
(2) the δ’s and (3) the factor βja . If we take the ratio of these formulas for j1 and j2, almost all
the factors cancel and we deduce that

βj1/βj2 = (−1)#{i′∈[m]:i′ ̸=i, bm+j1<bi′<bm+j2}.

The left hand side is independent of i, so the right hand side must be as well, and we deduce that,
for any j1 and j2, either all of {b1, . . . , bm} lie between bm+j1 and bm+j2 , or else none of them do.
So the column indices {b1, . . . , bm} are a cyclically consecutive subset of [2m]. Using the dihedral
symmetry of the totally nonnegative Grassmannian, we may now assume that {b1, . . . , bm} = [m].

We now look at the 2×2 principal and almost principal minors. Choose three indices j, k, ℓ, with
bj < bk < bℓ. Consider the minors σjjσkk−σjkσkj , σjjσkℓ−σjℓσkj and σjℓσkk−σjkσkℓ. Up to sign,
these are the Plücker coordinates ∆{b1b2······bm,bj+m,bk+m}\{bj ,bk}, ∆{b1b2······bm,bk+m,bℓ+m}\{bj ,bk}, and
∆{b1b2······bm,bj+m,bℓ+m}\{bj ,bk}.

If the principal and almost principal minors appear as Plücker coordinates, then there is a choice
of βj , βk, βℓ such that the maximal minors of the above matrix are exactly (not just up to sign)
the minors of Σ listed above. Computing these minors and canceling out common sign factors, we
obtain that −βj = βk = βℓ. However, we can do the same analysis with the principal and almost
principal minors σkkσℓj − σkjσℓk, σkjσℓℓ − σkℓσℓj and σkkσℓℓ − σkℓσℓk. From this, we deduce that
βj = βk = −βℓ, and we obtain a contradiction.

5.3 Possibility of a synthesis?

We have seen that Karpman’s study of total positivity for Lagrangian Grassmannians is not the
same as that for electrical networks. It might be interesting, though, to ask whether there is a
common framework which accommodates both subjects. Let K be any skew symmetric pairing
Rm × Rm → R. The condition that a k-plane V be isotropic for K is a linear condition on the
corresponding point of the Grassmannian Gr(k, n), written in Plücker coordinates; let’s write H for

the corresponding plane in RP(
n
k)−1. Here are some natural questions to ask, which we have seen

have good answers for both the forms Ω, from electrical networks, and for Karpman’s form ⟨ , ⟩.

1. Under what circumstances does H cross the cells of the totally nonnegative Grassmannian,
Gr(k, n)≥0, transversely?
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2. Under what circumstances is the intersection of H with each cell either empty or else an open
ball?

3. Can one give a simple description, in terms of the combinatorics of bounded permutations,
for when that intersection is nonempty?

One could also ask these questions for linear subspaces of Plücker space other than those coming
from skew forms. For example, the condition that a k-plane in Rn contains a given vector is also a
linear condition in Plücker coordinates.

Finally, we have seen that positive Gaussoids are very different; they do not come from the
totally positive Grassmannian at all. One could wonder whether the nice behavior of positive
Gaussoids suggests that there are other sign patterns of Plücker coordinates, besides positivity,
which might be interesting to study. Alternatively, the nice behavior of positive matrices might
make one wonder whether there is any interest in statistical models where the minors of Σ have
signs corresponding to totally positive points of LG(m, 2m).
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