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Abstract

A biperiodic planar resistor network is a pair (G, c) where G is a graph embedded on the
torus and c is a function from the edges of G to non-zero complex numbers. Associated with
the discrete Laplacian on a biperiodic planar network is its spectral data: a triple (C, S, ν),
where C is a curve, and S is a divisor on it, which we show is a point in the Prym variety of
C. We give a complete classification of networks (modulo a natural equivalence) in terms of
their spectral data. The space of networks has a large group of cluster automorphisms arising
from the Y-∆ transformation, giving discrete cluster integrable systems. We show that these
automorphisms are integrable in the algebro-geometric sense: under the spectral transform,
they become translations in the Prym variety.

1 Introduction

A planar resistor network is a pair (G̃, c̃) where G̃ is a planar graph and c̃ is a conductance function
that assigns a non-zero complex number to each edge of G̃, defined up to multiplication by a global
constant. It is said to be biperiodic if translations by Z2 act on (G̃, c̃) by isomorphisms. This is
equivalent to the data of the quotient (G, c) := (G̃, c̃)/Z2, where G is a graph on a torus and c is a
conductance function on G. Hereafter, we assume that our networks are on a torus.

The fundamental operator in the study of networks is the discrete Laplacian. It is a periodic
finite-difference operator associated to which is its spectral data, a curve, and a divisor on it, defined
below. The main goal of this paper is to show that the spectral transform, the map that takes a
biperiodic network to its spectral data, is a birational map from the space of biperiodic networks
to a certain moduli space of curves and divisors. Therefore, the spectral transform provides a
classification of networks in the torus, analogous to the classification of resistor networks in the
disk in terms of their response matrices due to De Verdière-Gitler-Vertigan [CdVGV96] and Curtis-
Ingerman-Morrow [CIM98], and in a cylinder due to Lam and Pylyavskyy [LP12]. While in typical
geometric or probabilistic applications the conductances are always positive real numbers, the
algebraic nature of the problem leads us to consider general non-zero complex conductances.

To give a more precise statement, we start by defining the space of biperiodic networks. There
is a natural equivalence relation on networks, defined by certain local rearrangements of the graph
and its conductances, which does not change the spectral transform. To define this equivalence
relation, let us start by defining a zig-zag path. A zig-zag path on G is a path that alternately turns
maximally left or right. A resistor network G is minimal [CdVGV96, CIM98] if any lifts of any
two zig-zag paths to G̃ do not intersect more than once and any lift of a zig-zag path has no self
intersections. Minimality is a mild assumption on networks since any network may be reduced to
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a minimal one by certain elementary moves without affecting its electrical properties. The Newton
polygon of a minimal resistor network is the unique integral polygon whose primitive edges are given
by the homology classes of zig-zag paths in cyclic order. Since zig-zag paths come in pairs related
by reversing orientation, the Newton polygon of a network is always centrally symmetric.

There is a local rearrangement of resistor networks called a Y-∆ move that preserves all electrical
properties outside the region where the rearrangement takes place (see Section 2.2 and Figure 10).
We say that two minimal networks (G1, c1) and (G2, c2) are topologically equivalent if there is a
sequence of Y-∆ moves that takes the underlying graph G1 to the graph G2. Goncharov and Kenyon
[GK13] showed that topological equivalence classes of networks are classified by centrally symmetric
convex integral polygons. In other words, associated with any centrally symmetric convex integral
polygon N is a minimal resistor network with Newton polygon N , and any two minimal resistor
networks with Newton polygon N are related by a sequence of Y-∆ transformations.

Two networks (G1, c1) and (G2, c2) are electrically equivalent if there is a sequence of Y-∆
moves that takes the network (G1, c1) to the network (G2, c2). Goncharov and Kenyon [GK13] con-
structed the resistor network cluster variety RN parameterizing the electrical equivalence classes
of resistor networks that have Newton polygon N as follows: A centrally symmetric integral poly-
gon N determines a finite collection of minimal resistor networks whose Newton polygon is N ,
related by Y-∆ transformations. To each minimal resistor network G is associated a complex
torus (C×)# edges of G−1, which parameterizes conductance functions on G. A Y-∆ transformation
G1 ⇝ G2 induces a birational map between the complex tori associated with G1 and G2. The
space RN is obtained by gluing the complex tori for all graphs with Newton polygon N using these
birational maps.

Goncharov and Kenyon further showed that RN can be identified with an isotropic subvariety
of an algebraic integrable system XN associated with the dimer model in the torus. Let SN be
the moduli space of triples (C, S, ν), where C is an algebraic curve in (C×)2 defined by a Laurent
polynomial P (z, w) with Newton polygon N , S is a degree g effective divisor on C (where g = #
interior lattice points in N = genus of C) and ν is a parameterization of the points at infinity of C.
Kenyon and Okounkov [KO06] constructed a map XN → SN called the spectral transform. Fock
[Foc15] showed that the spectral transform is birational and constructed an explicit inverse map
using theta functions on the Jacobian variety of C.

For a biperiodic planar network, we can use the Laplacian to construct a spectral transform
RN → SN , where SN is defined as in the previous paragraph, but with the divisor S now of degree
g = # interior lattice points in N − 1. Let S ′

N ⊂ SN be the subspace where P (z, w) satisfies

1. P (1, 1) = 0 and the point (1, 1) is a node;

2. The map σ : (z, w) 7→ ( 1z ,
1
w ) is an involution on C,

and the divisor S satisfies

S + σ(S)− q1 − q2 = KĈ in Pic2g−2(Ĉ), (1)

where Ĉ is the normalization of C, g is the geometric genus of Ĉ, q1, q2 are the points in the
fiber of the node at (1, 1) and KĈ is the canonical divisor class on Ĉ. The appearance of the
space S ′

N is not surprising, since it has been studied in connection with the discrete BKP equation
[DJKM82, Dol07], and the discrete BKP equation is related to the Y−∆ move by a change of
coordinates ([GK13, Section 5.3.1]). Geometrically, the condition (1) satisfied by the divisor S
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Figure 1: The standard divisor S on the amoeba of the spectral curve.

means that it lies in a translation of a certain subvariety of the Jacobian of Ĉ, called the Prym
variety (cf. Proposition 6.6).

Our main result is the following complete classification of biperiodic planar resistor networks in
terms of their spectral data:

Theorem 1.1 (cf. Theorem 6.18). The spectral transform RN → S ′
N is birational.

The most difficult part of the proof of Theorem 1.1, and the main new contribution of this
paper, lies in showing that the spectral divisor satisfies (1). Along the way, we provide an explicit
description of oriented cycle-rooted spanning forests of G (abbreviated to OCRSFs hereafter) whose
homology classes are boundary lattice points of N (Theorem 3.2), analogous to results for dimers in
[Bro12,GK13]. In particular, we see that every OCRSF corresponding to a boundary lattice point
is a union of cycles (Corollary 3.3).

We give an explicit inverse of the spectral transform (see (26)) in terms of theta functions on the
Prym variety, following the algebro-geometric construction of the B-quadrilateral lattice by Doliwa
[Dol07].

In Fock’s construction, the local transformation in the dimer model called the spider move,
which is analogous to the Y-∆ move in networks, is described by an identity for theta functions on
the Jacobian called Fay’s trisecant identity. Analogously, we show that:

Theorem 1.2 (cf. Theorem 7.1). The Y-∆ transformation is described by Fay’s quadrisecant
identity [Fay89] (cf. Theorem 6.7) for theta functions on the Prym variety.

The Y-∆ move involves subtraction free rational expressions, and therefore, the set of positive-
real-valued points of the cluster variety is well defined, which we denote byRN (R≥0). This subspace
is important for probabilistic applications. For a positive real valued point, the spectral data
(C, S, ν) has the following additional properties (see [Ken19]):
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1. C is a simple Harnack curve as in [Mik00]. Compact ovals (connected components) of C are
in bijection with interior lattice points of N .

2. The oval corresponding to the origin is degenerated to a real node.

3. S has a point in each of the other compact ovals, called a standard divisor in [KO06].

Spectral curves of genus zero correspond to the isoradial networks studied in [Ken02]. In this case,
the inverse spectral map recovers Kenyon’s results expressing the conductances in terms of tangents,
and Fay’s quadrisecant identity reduces to the triple tangent identity. For a different generalization
of isoradial networks to the case of the massive Laplacian on isoradial graphs, see [BdTR17].

Consider the map C(C) → A(C), (z, w) 7→ (log |z|, log |w|) ⊂ R2 from the C-valued points of C
to its amoeba A(C). For a simple Harnack curve, this map is a homeomorphism from the compact
ovals to the boundaries of the holes of the amoeba, and therefore provides a way to depict the
divisor S (see Figure 1 for an example, where the network is a 2 × 1 fundamental domain of the
triangular lattice).

A sequence of Y-∆ moves that takes a graph G to itself gives rise to a birational automorphism
(called a cluster modular transformation) of RN , where N is the Newton polygon of G. A cluster
modular transformation provides a discrete integrable system on RN . For example, if we consider
the honeycomb lattice, and do the Y-∆ move at the downward triangles, we obtain the cube recur-
rence studied by Carroll and Speyer ([HS10], see also [GK13] Section 6.3). We show that cluster

modular transformations are linearized in the Prym variety of Ĉ (Theorem 8.1). In the case of
positive-real-valued conductances, we may view this as moving each point along the boundary of
the corresponding hole in the amoeba.

Organization of the paper. In Section 2, we collect background information on resistor
networks in the torus, mostly following [GK13] and [Ken19]. In Section 3, we construct all ex-
tremal OCRSFs. In Section 4, we construct the spectral transform and prove some of its basic
properties. The technical Section 5 forms the heart of the paper, and in it we find the image of
the spectral transform. In Section 6, we review results about the Jacobian and Prym varieties, and
prove Theorem 1.1. In Section 7, we prove Theorem 1.2 relating the Y-∆ transformation to Fay’s
quadrisecant identity, and use this to show that cluster modular transformations are linearized in
the Prym variety in Section 8. Finally, the appendix collects basic results about Riemann surfaces
that we will use extensively in Sections 4 and 5.

Acknowledgements. I would like to thank Giovanni Inchiostro, Rick Kenyon, and Xufan
Zhang for helpful discussions, and Robin Pemantle and the anonymous referee for their comments
on the article.

2 Background

In this section, we give an introduction to resistor networks in the torus and the line bundle
Laplacian.

2.1 Resistor networks in the torus

Let T denote the topological torus. A resistor network is a pair (G, c) where

4



γz

γw

v1 v2

a b

c d

Figure 2: A resistor network in the torus (obtained by gluing opposite sides of the dashed rectangle)
along with a conductance function. The loops γz, γw give a basis for H1(T,Z).

a

b

c
B

A C

Figure 3: The Y-∆ move replaces a portion of the resistor network G that looks like the Y (on the
left) with the ∆ (on the right), or vice versa. The transformation rule for conductances is given by
(5).

1. G = (V,E, F ) is a graph embedded in T such that its faces, i.e. connected components of
T−G, are topological disks, and

2. c : E(G) → C× is a function defined modulo global multiplication by a nonzero complex
number.

There is a local transformation of resistor networks called the Y−∆ move (see Figure 3). Two
graphs G1 and G2 in T are said to be topologically equivalent if there is a sequence of Y−∆ moves
that transform G1 into G2.

There is an invariant called the Newton polygon that classifies topological equivalence classes,
which we now define. A zig-zag path in a resistor network G is an oriented path that alternately
turns maximally right or left at each vertex. Zig-zag paths in G come in pairs with opposite
orientations: Let α denote the opposite zig-zag path of a zig-zag path α. We denote the set of
zig-zag paths on G by Z(G). The medial graph G× of G is the graph obtained as follows:

1. Place a vertex te at the midpoint of each edge e ∈ E(G), and

2. for e, e′ ∈ E(G), draw an edge between te and te′ if there is a face of G around which e and
e′ occur consecutively.

It is customary to represent a zig-zag path e1 → e2 → · · · → en → e1 using the path te1te2 →
te2te1 → · · · → tente1 → te1te2 in the medial graph.
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Figure 4: On the left is shown two of the four zig-zag paths of the resistor network in Figure 2.
The other two zig-zag paths are obtained by reversing the orientation of the ones shown. On the
right is its Newton polygon.

Let π : R2 → T denote the universal cover of T, and let G̃ = π−1(G) denote the biperiodic
graph in the plane. We say that G is minimal if the lift of any zig-zag path to the universal cover
R2 does not have self-intersections and if any lifts of two different zig-zag paths intersect at most
once.

If G is a minimal graph, associated to each zig-zag path α ∈ Z(G) is its homology class [α] ∈
H1(T,Z) ∼= Z2. A convex polygon N ⊂ H1(T,R) ∼= R2 is called integral if its vertices are contained
in H1(T,Z) ∼= Z2. By a primitive edge vector of N , we mean a vector contained in an edge of N and
oriented in such a way that it is contained in the counterclockwise oriented boundary of N , so that
its starting and ending points are integer lattice points. Since each edge of G is contained in two
zig-zag paths that traverse the edge in opposite directions,

∑
α∈Z(G)[α] = 0. Therefore, there is a

unique (modulo translation) convex integral polygon N = N(G) in H1(T,R) whose set of primitive
edge vectors is {[α] : α ∈ Z(G)}, called the Newton polygon of G. The terminology will be justified
in Section 2.4. A convex integral polygon N is said to be centrally symmetric if (0, 0) ∈ N and is
invariant under rotation by π. Since [α] = −[α], we can translate the Newton polygon of G so that
it is centered at the origin to obtain a centrally symmetric polygon.

We define the weight of a zig-zag path α as follows: Suppose

α = v1
e1−→ v2

e2−→ · · · en−1−−−→ vn
en−→ v1,

where α turns maximally right at v1, v3 etc, and maximally left at v2, v4 etc. Then

wt(α) :=

∏
i odd c(ei)∏
i even c(ei)

(2)

is the alternating product of conductances around α. Since left and right turns alternate, there is
an equal number of factors in the numerator and denominator of (2). We also note that

wt(α) = wt(α). (3)

Example 2.1. For the resistor network (G, c) shown in Figure 2, there are four zig-zag paths (see
the left hand side of Figure 4). In the basis ([γz], [γw]) for H1(T,Z) in Figure 2, the homology
classes of the four zig-zag paths are

(2,−1), (−1,−2), (1,−2), (1, 2).

The Newton polygon is shown on the right hand side of Figure 4.
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Figure 5: Correspondence between zig-zag paths in the Y and the ∆, which we can think of as
sliding one of the zig-zag paths through the intersection point of the other two. Since the zig-zag
paths are unchanged outside the dashed disk, their homology classes are invariant.

A Y−∆ move does not change the homology class of any zig-zag path (Figure 5), and therefore
the Newton polygon is invariant under topological equivalence, so the Newton polygon is a well-
defined function.

{Minimal torus graphs}/topological equivalence G 7→N(G)−−−−−−→
{Centrally symmetric convex integral polygons in H1(T,R)}. (4)

Theorem 2.2 ([GK13]). The function (4) mapping a graph to its Newton polygon is a bijection.

In other words, for each centrally symmetric convex integral polygon N in H1(T,R), there is a
family of minimal resistor networks with Newton polygon N , and any two members of the family
are related by Y-∆ moves.

2.2 The resistor network cluster variety

So far, we have only considered the underlying graph of a resistor network and not the conductance.
In this section, we define a space parameterizing resistor networks with Newton polygonN , following
[GK13].

Let N be a centrally symmetric convex integral polygon in H1(T,R). For a minimal resistor
network G with N(G) = N , let

RG := {c : E(G) → C×}/C× ∼= (C×)#E(G)−1

be the space of conductances on G. A Y-∆ move s : G1 ⇝ G2 induces a birational map µs :
RG1

99K RG2
(we denote rational maps by 99K), given in the notation of Figure 10 by

A =
bc

a+ b+ c
, B =

ac

a+ b+ c
, C =

ab

a+ b+ c
. (5)

Two minimal resistor networks (G1, c1) and (G2, c2) with Newton polygon N are said to be elec-
trically equivalent if there is a sequence of Y−∆ moves transforming (G1, c1) into (G2, c2). Gluing
the spaces RG for all minimal G with Newton polygon N using the birational maps induced by
Y−∆ moves, we obtain a space RN parameterizing electrical equivalence classes of minimal resistor
networks with Newton polygon N , called the resistor network cluster variety.
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2.3 The line bundle Laplacian

In this section, we describe the line bundle Laplacian for a general resistor network (a graph G with
a conductance function c : E(G) → C×, not necessarily embedded in T), a variant of the discrete
Laplacian, that captures additional topological information. In Section 2.4, we will specialize the
construction to resistor networks in T and flat line bundles with connection.

A discrete line bundle with connection (L, ϕ) on a graph G is the data of:

1. A complex line Lv ∼= C at each vertex v of G, and

2. An isomorphism ϕ(e) : Lv → Lu, called parallel transport, for each directed edge e = v → u
such that ϕ(e) = ϕ(e)−1, where e = u → v denotes the edge e oriented in the opposite
direction.

Two line bundles with connection (L, ϕ) and (L′, ϕ′) are said to be isomorphic or gauge equivalent
if there exists isomorphisms ψ(v) : Lv → L′

v such that for all directed edges e = v → u of G, the
following diagram commutes

Lv Lu

L′
v L′

u

ϕ(e)

ψ(v) ψ(u)

ϕ′(e)

.

If γ = v1
e1−→ v2

e2−→ · · · en−1−−−→ vn
en−→ v1 is an oriented cycle in G, the monodromy m(γ) of (L, ϕ)

around γ is the composition

Lv1
ϕ(e1)−−−→ Lv2

ϕ(e2)−−−→ · · · ϕ(en−1)−−−−−→ Lvn
ϕ(en)−−−→ Lv1

of the parallel transports around γ. Using the identification GL(Lv1)
∼= C×, we consider m(γ) to

be a nonzero complex number. Note that this complex number does not change if we use another
vi to define it instead of v1. The moduli space of line bundles with connection on G modulo gauge
equivalence is denoted by LG.

Let (G, c) be a resistor network and let (L, ϕ) be a line bundle with connection on G. Let V (G)
denote the set of vertices of G. The line bundle Laplacian is the linear operator

∆ :
⊕

v∈V (G)

Lv →
⊕

v∈V (G)

Lv

∆(f)(v) :=
∑
e:u→v

c(e)(f(v)− ϕ(e)f(u)),

where the sum is over all directed edges of G oriented towards v. An oriented cycle-rooted spanning
forest (OCRSF) F of G is a collection of edges of G such that each connected component of F has
the same number of vertices and edges (so that each connected component has a unique cycle),
along with a choice of orientation for each cycle in F . The weight of an OCRSF F is defined to
be wt(F ) =

∏
e∈F c(e). The following result generalizes Kirchhoff’s matrix tree theorem to the line

bundle Laplacian.
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γz

γw

1 z
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Figure 6: The flat line bundle with connection (L, ϕ) associated to (z, w) ∈ (C×)2 for the resistor
network from Figure 2. The edges have been given an arbitrary orientation and the number next
to each directed edge indicates the connection in that direction, while the connection for the edge
in the other direction is the reciprocal.

Theorem 2.3 (Kenyon, 2010 [Ken11]). Let (G, c) be a resistor network and let (L, ϕ) be a line
bundle with connection on G.

det∆ =
∑

OCRSFs F

wt(F )
∏

cycles η∈F

(1−m(η)),

where m(η) is the monodromy of (L, ϕ) along the cycle η.

2.4 Flat line bundles with connection in T
We now return to the case of minimal resistor networks in T. In this section, we give a more explicit
coordinate description of the line bundle Laplacian.

Let (G, c) be a minimal resistor network in T. A line bundle with connection on G is called flat
if the monodromy around the boundary of any face of G is trivial. Let Lflat

G ⊂ LG be the subspace
of flat connections. The monodromies around loops in G give rise to isomorphisms such that the
following diagram commutes:

Lflat
G LG

H1(T,C×) H1(G,C×),

∼= ∼=

where the bottom arrow comes from the embedding G ↪→ T. Therefore a flat line bundle with
connection is the same thing as a cohomology class in H1(T,C×). We give a coordinate description

of the inverse map (C×)2 ∼= H1(T,C×)
∼=−→ Lflat

G .
Let R be a fundamental rectangle for T, so that T is obtained by gluing together opposite sides

of R. We label the curves in T forming the sides of R by γz, γw, oriented as shown in Figure 6,
so that ([γz], [γw]) is a basis for H1(T,Z). For (z, w) ∈ (C×)2, we define a flat line bundle with
connection (L, ϕ) on G as follows:

1. Let Lv ∼= C be a complex line at each vertex v of G, and
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2. For a directed edge e : u→ v of G, let ϕ(e) : Lu → Lv be defined as multiplication by

z(e,γw)Tw(e,−γz)T ∈ C×,

where (·, ·)T is the intersection pairing in T.

For this flat line bundle with connection, let ∆(z, w) denote the line bundle Laplacian. We can
rephrase Theorem 2.3 as

det∆(z, w) =
∑

OCRSFs F

wt(F )
∏

cycles η∈F

(1− zi(η)wj(η)), (6)

where (i(η), j(η)) ∈ Z2 is the homology class of the cycle η in the basis ([γz], [γw]) for H1(T,Z).
The Laurent polynomial P (z, w) := det∆(z, w) is called the characteristic polynomial. The curve
C0 := {(z, w) ∈ (C×)2 : P (z, w) = 0} is called the (open) spectral curve.

Remark 2.4. Since the line bundle with connection is flat, for an OCRSF F with a topologically
trivial cycle, that is, a cycle η such that [η] = 0 in H1(T,Z)), we have∏

cycles η∈F

(1− zi(η)wj(η)) = 0,

and therefore such OCRSFs do not contribute to P (z, w). If F has no topologically trivial cycles,
since two distinct cycles in F cannot intersect, if η is a cycle in F , every cycle in F has homology
class ±[η].

The Newton polygon of P (z, w) is defined as

N(P (z, w)) = Convex-hull{(i, j) ∈ Z2 : coefficient of ziwj is non-zero in P (z, w)}.

Proposition 2.5 ([GK13]). Let (G, c) be a minimal resistor network in T with Newton polygon N .
Let P (z, w) denote the characteristic polynomial. Then, N(P (z, w)) = N .

This proposition justifies the name Newton polygon for N(G).

Example 2.6. Let us compute the Laplacian and the characterisitic polynomial for the resistor
network in Figure 2. The line bundle Laplacian is given by the matrix

∆(z, w) =

[
a+ b+ c(2− w − 1/w) −a− bz

−a− b/z a+ b+ d(2− w − 1/w)

]
. (7)

Therefore

P (z, w) = cd

(
(1− w)

2
+

(
1− 1

w

)2
)

+ ab

(
(1− z) +

(
1− 1

z

))
+ (ac+ bc+ ad+ bd)

(
(1− w) +

(
1− 1

w

))
,

enumerating the 12 OCRSFs of this resistor network. Moreover,

N(P (z, w)) = Convex-hull{(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1), (0, 2), (0,−2)}

coincides with N(G) in Figure 4.
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Proposition 2.7. The characteristic polynomial P (z, w) has the following properties:

1. P (z, w) = P ( 1z ,
1
w );

2. (1, 1) ∈ C0;

3. The point (1, 1) is a singular point of C0.

Proof. 1. P (z, w) = P ( 1z ,
1
w ) follows from ∆(z, w) = ∆( 1z ,

1
w )

T .

2. P (1, 1) = 0 follows from the observation that ∆(z, w) has nonzero kernel at (1, 1); constant
functions are discrete harmonic.

3. Differentiating the expression (6) for P (z, w), we see that

∂P (1, 1)

∂z
=
∂P (1, 1)

∂w
= 0,

hence (1, 1) is a singular point.

3 Extremal OCRSFs

The goal of this section is to give a characterization of extremal OCRSFs (cf. Theorem 3.2). This
result will only be used in the proof of Theorem 5.7.

An OCRSF F∨ on G∨ is dual to an OCRSF F on G if no edge of F∨ crosses an edge of F . It
is easy to see that F∨ has the same number of cycles as F and each cycle has homology class ±[η],
where η is any cycle in F . An OCRSF F has 2k duals where k is the number of cycles in F , one
for each choice of orientation of the dual cycles.

Given a pair (F, F∨) of dual OCRSFs, define its weight to be wt(F, F∨) := wt(F ). To (F, F∨)
we associate a homology class,

[(F, F∨)] :=
1

2

∑
cycles η in F∪F∨

[η] ∈ H1(T,Z).

Then the Newton polygon of the resistor network is

N = Convex-hull{[(F, F∨)] ∈ H1(T,Z) : (F, F∨) is a pair of dual OCRSFs}.

The map (F, F∨) 7→ [(F, F∨)] associates to each pair of dual OCRSFs an integer lattice point in
the Newton polygon.

We say that a pair of dual OCRSFs (F, F∨) is external if [(F, F∨)] is a boundary lattice point
of N . It is extremal if [(F, F∨)] is a vertex of N . We note that if (F, F∨) is external, then the
orientations of F and F∨ are uniquely determined by the homology class [(F, F∨)], and [F ] =
[F∨] = [(F, F∨)]. This observation allows us to define external and extremal OCRSFs on G, rather
than pairs of dual OCRSFs.
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v1 v2
σ

Figure 7: On the left (in red) is the extremal OCRSF F(0,2) corresponding to the resistor newtork
in Figure 2. On the right the zig-zag fan Σ along with the 2-dimensional cone σ corresponding to
the vertex (0, 2) of the Newton polygon on right side of Figure 4.

3.1 Local and global zig-zag fans

Following [Bro12], for a vertex v ∈ G, we define the local zig-zag fan Σv at v as the complete fan
of strongly convex rational polyhedral cones in H1(T,R) whose rays are generated by homology
classes of zig-zag paths through v that turn maximally right at v.

The fan Σ whose rays are generated by the homology classes of all zig-zag paths on G is called
the global zig-zag fan of G.

Remark 3.1. The global zig-zag fan is not the dual fan of N , but it is isomorphic to it.

We have the natural map of fans iv : Σ → Σv for each v ∈ G. If σ is a two-dimensional cone in
Σ, iv(σ) is contained in a unique two-dimensional cone in Σv, which we denote by σv. σv determines
a unique edge e ∈ E adjacent to v that is oriented away from v: e is the edge that contains the two
zig-zag paths corresponding to the rays of σv. Let Fσv

be the 1-chain that is 1 on e, −1 on −e and
0 on all other edges. We define

Fσ :=
∑

v∈V (G)

Fσv
.

To a zig-zag path α ∈ Z we associate a 1-chain ωα that is 1 on edges e in α that are oriented in the
same direction as α and 0 on edges not in α. If F is external, [F ] lies on an edge E of N , which
corresponds to a family of zig-zag paths {αk}. Let E = V1V2, where V1, V2 are vertices of N such
that V2 is the vertex after V1 when the boundary of N is traversed counterclockwise.

The following theorem explicitly describes all external OCRSFs.

Theorem 3.2. FV := Fσ is the unique extremal OCRSF on G such that [FV ] is the vertex V of
N that is dual to σ.

Let A be a subset of the family of zig-zag paths {αk} corresponding to E. The external OCRSFs
on E are of the form

FA := FV1
+
∑
αk∈A

ωαk
.

In particular, FV2
= FV1

+
∑
k ωαk

, and the number of OCRSFs corresponding to a boundary lattice
point of N is a binomial coefficient.

We also need the following result later.

Corollary 3.3. Every external OCRSF is a disjoint union of cycles.

12



Both Theorem 3.2 and Corollary 3.3 will be proved in Section 3.2.

Example 3.4. Let us compute the extremal OCRSF of the network in Figure 2 correspond-
ing to the vertex (0, 2) of its Newton polygon. The global zig-zag fan Σ has rays generated by
(−1, 2), (−1,−2), (1,−2), (1, 2) (shown on the left side of Figure 7), and coincides with the local
zig-zag fans Σv1 ,Σv2 . Let us consider v1. σ is the 2-dimensional cone with rays generated by (−1, 2)
and (−1,−2). Since iv1 : Σ → Σv1 is the identity map, σv1 = σ. Therefore Fσv1

is the 1-chain that
is 1 on the edge with conductance c, oriented upwards. Similarly Fσv2

is the edge with conductance
d oriented upwards. F(0,2) is the OCRSF given by the union of these two oriented edges (Figure 7).
As we expect from Corollary 3.3, it is a union of (two) cycles.

3.2 Proof of Theorem 3.2

While its possible to prove Theorem 3.2 directly, it is easier to use Temperley’s bijection to relate
it to corresponding statements about the dimer model. The results of this section are not used
anywhere else in the paper, and therefore may be skipped on a first reading. Let Γ be a bipartite
surface graph on T, that is the vertices of Γ are colored black or white, and each edge of Γ is incident
to a vertex of each color.

A dimer cover (or perfect matching) of Γ is a collection of edges of Γ such that every vertex is
adjacent to a unique edge in the collection. A dimer cover M on Γ gives a 1-chain ωM on Γ. If
M0 is another dimer cover, ωM − ωM0

is a 1-cycle and therefore determines a homology class in
H1(Γ,Z). Under the projection H1(Γ,Z) → H1(T,Z), we obtain a homology class [M ] ∈ H1(T,Z).
The Newton polygon of Γ is

N := Convex-hull{[M ] ∈ H1(T,Z) :M is a dimer cover}.

N depends on the choice of reference dimer coverM0. Changing the reference matching corresponds
to translating the polygon N . M 7→ [M ] gives a well defined map from the set of dimer covers to
the integer lattice points in N .

3.2.1 Zig-zag paths on bipartite graphs and minimality

A zig-zag path on a bipartite torus graph Γ is a path that turns maximally right at black vertices
and maximally left at white vertices. Let us denote by Z(Γ) the set of all zig-zag paths in Γ. We

say that Γ is minimal if in the universal cover Γ̃, zig-zag paths have no self intersections and no
pairs of zig-zag paths oriented in the same direction meet twice.

Suppose Γ is a minimal bipartite graph on a torus. Each path α ∈ Z(Γ) gives us a homology
class [α] ∈ H1(T,Z) which is an integral pimitive vector on a side of the Newton polygon N . The
zig-zag paths taken in cyclic order correspond to cyclically ordered primitive integral vectors in the
boundary of the Newton polygon. Therefore an edge of N corresponds to a family of zig-zag paths,
each with homology class equal to the primitive integral edge vector of the edge.

3.2.2 Temperley’s bijection on the torus

Associated to G is a bipartite graph ΓG obtained by superposing G and its dual graph G∨. The
vertices and faces of G become the black vertices of ΓG and the edges of G become the white vertices
of ΓG. Applying Euler’s formula on T to G we see that ΓG has equal number of white and black
vertices.
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Let G be a resistor network and let ΓG be the associated bipartite graph.

Lemma 3.5 (Goncharov and Kenyon, 2012 [GK13]). The Newton polygon N of the resistor network
G coincides with the Newton polygon of the dimer model on ΓG. Moreover, there is a canonical
homology-class-preserving bijection between Z(G) and Z(ΓG).

Given a pair of dual OCRSFs (F, F∨) on G, we can construct a dimer cover M(F,F∨) on ΓG
using the rule: The oriented edge e = uv is in F ∪ F∨ if and only if the edge ue is in MF .

Theorem 3.6 (Temperley’s bijection on torus; Kenyon, Propp and Wilson, 2000 [KPW00]). Let
(G, c) be a resistor network on a torus. (F, F∨) 7→M(F,F∨) is a bijection from pairs of dual OCRSFs
on G to dimer covers on ΓG such that [(F, F∨)] = [M(F,F∨)].

Note that there is a canonical bijection between Z and ZΓG
that preserves homology classes.

3.2.3 External dimer covers

In this section, we collect some results about dimer covers from [Bro12,GK13]. Let Γ be a minimal
bipartite graph on a torus. We say that a dimer cover M is extremal if [M ] is a vertex of the
Newton polygon. If b is any black vertex in Γ, we define the local zig-zag fan Σb at b to be the
complete fan of strongly convex rational polyhedral cones in H1(T,Z) whose rays are generated by
homology classes of those zig-zag paths in Γ that contain b.

The global zig-zag fan of Γ is the fan whose rays are generated by the homology classes of all
zig-zag paths on Γ. The identity map in H1(T,Z) defines a map of fans ib : Σ → Σb. If σ is any
two dimensional cone in Σ, ib(σ) is contained in a unique two dimensional cone in Σb which we call
σb. σb corresponds to a unique edge wb incident to b, given by the intersection of the two zig-zag
paths through b whose rays in Σb form the boundary of σb. Define the 1-chain ω(σb) to be 1 on the
edge wb and 0 on all other edges. Define

ω(σ) =
∑

b∈V (Γ) black

ω(σb).

Two dimensional cones in Σ are in bijection with vertices of the Newton polygon: If σ is a two
dimensional cone in Σ, let E1 and E2 be the edges of N whose associated rays form the boundary
of σ in Σ. Then E1 and E2 occur in cyclic order and therefore there is a vertex V between them in
N .

Lemma 3.7 (Broomhead, Goncharov-Kenyon, 2012 [Bro12, GK13]). ωV := ω(σ) is the unique
extremal dimer cover associated to the vertex V of N that corresponds to σ.

We say that a dimer cover M is external if [M ] is a boundary lattice point of N . To a zig-zag
path α we associate a 1-chain ωα that is 1 on edges e in α that are oriented the same way as α and
0 on edges not in α. If M is external, [M ] lies on an edge E of N , which corresponds to a family of
zig-zag paths {αk}. Let E = V1V2, where V1, V2 are vertices of N such that V2 is the vertex after
V1 when the boundary of N is traversed counterclockwise.

Lemma 3.8 (Broomhead, Goncharov-Kenyon, 2012 [Bro12,GK13]). Let A be a subset of the family
of zig-zag paths {αk} corresponding to E. The external dimer covers on E are of the form

ωA := ωV1
+
∑
αk∈A

ωαk
.
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In particular, ωV2 = ωV1 +
∑
k ωαk

, and the number of dimer covers corresponding to a boundary
lattice point of N is a binomial coefficient.

Proof of Theorem 3.2. Follows immediately from Temperley’s bijection (Theorem 3.6), Lemmas 3.7
and 3.8, and the canonical bijection between zig-zag paths on G and ΓG.

Proof of Corollary 3.3. Suppose Fσ is an external OCRSF and let v be a vertex of G. By construc-
tion, there is a single outgoing edge from v. We show that there is also a single incoming edge.
Consider the fan −Σv whose rays are generated by homology classes of zig-zag paths that turn
maximally left at v and let i′v : Σ → −Σv be the natural map. i′v(σ) is contained in a unique two
dimensional cone σ′

v which corresponds to a unique edge e oriented towards v. Define the 1-chain
F ′
σv

to be 1 on e and 0 on all other edges and define the 1-chain

F ′
σ :=

∑
v∈V (G)

F ′
σv
.

Let e = uv be an edge in G and let α1 and α2 be the two zig-zag paths through e that turn
maximally left at v. Then α1 and α2 turn maximally right at u and therefore we have σ′

v = σu
which implies F ′

σv
= Fσu

. Summing over all vertices, we get F ′
σ = Fσ. It is clear from the definition

of F ′
σ that every vertex has a unique incoming edge. It follows that Fσ is a union of cycles.
By Theorem 3.2, every external OCRSF is obtained from an extremal OCRSF FV by adding

cycles corresponding to some zig-zag paths and therefore is also a union of cycles.

4 The spectral transform

In this section, we define the spectral transform. To use the theory of divisors, we need to be
working with a compact Riemann surface/proper smooth algebraic curve. This requires dealing
with two technical issues first:

1. The open spectral curve C0 is not compact. The standard way to fix this is to compactify it
by taking the closure of C0 in the toric surface associated to the Newton polygon.

2. The open spectral curve has a node, which we will resolve by a normalization [Vak17, Section
9.7].

We try to not assume much prior knowledge of toric surfaces, but do assume that the reader is
familiar with the theory of compact Riemann surfaces, and line bundles and divisors on them (also
see the Appendix).

4.1 Toric surfaces

We give an informal introduction to the toric surface XN associated to a polygon N that is sufficient
for our purposes and refer the reader to [CLS11,Ful93] for the detailed constructions. A toric surface
is an algebraic surface X (over C) that contains the torus (C×)2 as a dense open subvariety, such
that the action of (C×)2 on itself by multiplication extends to all of X. A convex integral polygon
N defines a projective toric surface XN , that is a toric surface embedded in a projective space as
a closed subvariety. In particular, XN is compact (proper). The geometry of XN is determined by
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the combinatorics of the polygon N . The complement of (C×)2 in XN is a union on P1s, called the
lines at infinity of XN , that intersect according to the combinatorics of N :

1. Each edge E of N corresponds to a P1 ⊂ XN , which we denote by DE ;

2. XN − (C×)2 =
⋃
E DE ;

3. If two edges E1 and E2 have a vertex of N in common, then DE1
∩DE2

is a single point;

4. If E1 and E2 do not have a vertex of N in common, then DE1 and DE2 are disjoint.

We give two examples of toric surfaces that can be understood very explicitly and illustrate the
general theory.

Example 4.1. If the Newton polygon is Convex-hull{(0, 0), (1, 0), (0, 1)}, then the toric surface
XN is P2 with the projective embedding given by the identity map. Let

P2 = (C3 − {(0, 0, 0)})/C×

be the quotient construction of P2 and let [x0, x1, x2] denote the homogeneous coordinates. The
embedding of the torus is

(C×)2 ↪→ P2

(z, w) 7→ [1 : z : w].

Therefore
P2 − (C×)2 = DE0 ∪DE1 ∪DE2 ,

where DEi
= {[x0 : x1 : x2] : xi = 0} is a P1. These are the three axes of P2, and any two of them

intersect in a point. For example,

DE0
∩DE1

= {[x0 : x1 : x2] : x0 = x1 = 0} = {[0 : 0 : 1]}.

Example 4.2. If N = Convex-hull{(0, 0), (1, 0), (0, 1), (1, 1)} is the unit square, the associated toric
surface XN is P1×P1. Let ([x0 : x1], [x2 : x3]) denote the homogeneous coordinates. The projective
embedding of XN is the Segre embedding

P1 × P1 ↪→ P3

([x0 : x1], [x2 : x3]) 7→ [x0x2 : x0x3 : x1x2 : x1x3].

The embedding of the torus is

(C×)2 ↪→ P1 × P1

(z, w) 7→ ([1 : z], [1 : w]),

and
P1 × P1 − (C×)2 = DE0

∪DE2
∪DE3

∪DE4
,

where

DE0 = [1 : 0]× P1, DE2 = [0 : 1]× P1,

DE1
= P1 × [1 : 0], DE3

= P1 × [0 : 1].

It is easy to check that they intersect according to the combinatorics of the square, for example
DE0

∩DE1
= ([1 : 0], [0 : 1]), DE0

∩DE2
= ∅ etc.
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4.2 Curves in toric surfaces

Let C0 ⊂ (C×)2 be a curve defined by a Laurent polynomial P (z, w) with Newton polygon N . Let
XN be the toric surface associated to N . Taking the closure of C0 in XN , we get a compact curve
C such that C0 = C ∩ (C×)2.

We record the following properties of a generic curve C in XN with Newton polygon N .

1. The curve C has genus equal to # interior lattice points in N [CLS11, Proposition 10.5.8],
generalizing the degree-genus formula for CP2 [Vak17, (18.6.6.1)].

2. The curve C meets the line at infinity DE in |E| points (counted with multiplicity), called
the points at infinity of C. Here |E| denotes the integral length of E, that is the number of
primitive integral vectors in E. For CP2, this follows from Bezout’s theorem [Vak17, Exercise
18.6.K].

For an open spectral curve C0, its closure C is called the spectral curve. For an edge E of N ,
let Z(E) ⊂ Z denote the set of zig-zag paths whose homology classes are primitive edge vectors in
E. Then we have |E| = #Z(E) = #C ∩DE . A parameterization ν of the points at infinity of C
by zig-zag paths is a collection {νE} of bijections νE : Z(E) → C ∩DE as E varies over the set of
edges of N .

A divisor S on a curve C is a formal linear-combination S =
∑n
i=1 aipi of points pi of C, where

ai ∈ Z. If ai ≥ 0, i ∈ [n], then S is called an effective divisor. The sum
∑n
i=1 ai is called the degree

of S and denoted deg S.

4.3 The spectral transform

Let G be a minimal resistor network associated to N and let v be a vertex of G. Let SN be the
moduli space of triples (C, S, ν) such that

1. C is a curve in XN with Newton contained in N ;

2. S is a degree g effective divisor on C;

3. ν is a parameterization of the points at infinity of C by zig-zag paths of G.

Let i : C0 ↪→ (C×)2 denote the inclusion. The line bundle Laplacian is a map of trivial vector
bundles on (C×)2: ⊕

v∈V (G)

O(C×)2
∆(z,w)−−−−→

⊕
v∈V (G)

O(C×)2 (8)

Suppose the conductance is generic, and let L = coker ∆(z, w). Since C0 is the locus where
P (z, w) = det∆(z, w) = 0, we have the following:

1. If (z, w) ∈ C0 \ (1, 1) and the conductance is generic, then C0 is smooth at (z, w). In this
case, the cokernel of ∆(z, w) is one-dimensional [CT79, Theorem 2.2];

2. The cokernel at the singular point (1, 1) is the vector space of discrete harmonic functions
on G. This space is one-dimensional because, by the maximum principle, the only harmonic
functions are the constant functions.

3. If (z, w) /∈ C0, then ∆(z, w) is nonsingular and the cokernel is 0.
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Therefore, we see that L is not a vector bundle on (C×)2, but a coherent sheaf that is supported
on C0, and the fibers over C0 are all one-dimensional.

Lemma 4.3. For a generic conductance, the restriction i∗L of L to C0 is a line bundle on C0.

Proof. Since C0 is integral (i.e., irreducible and reduced) for a generic conductance and i∗L is a
coherent sheaf of constant fiber dimension one, it is a line bundle by [Vak17, Exercise 13.7.K].

The resistor network spectral transform is the rational map

ρG,v : RN → SN ,

described on the torus chart RG as follows:

1. C is the spectral curve.

2. Consider the section δv0 of
⊕

v∈V O(C×)2 . Its image under the cokernel map
⊕

v∈V O(C×)2 →
L is a section of L. Restricting to C0, we get a section of the line bundle i∗L on C0. The
divisor S is defined to be the divisor of this section.

3. ν is the parameterization of the points at infinity of C by zig-zag paths on G such that the
coordinate of the point infinity associated with a zigzag path is determined by the weight of
the zig-zag path. Precisely, let [α] = (i, j). Then ziwj can be taken as a local coordinate on
the line DE , and the point ν(α) ∈ DE is defined by ziwj = 1

wt(α) .

By a rational map, we mean that the domain of the map ρG,v is a Zariski-dense open subvariety of
RN , that is, it is only defined for generic conductances.

If we take the image of the section δv of
⊕

v∈V O(C×)2 instead of δv0 , we denote the divisor we
get by Sv, so S = Sv0 . The next proposition tells us how to compute the divisors Sv in practice.
Let Q(z, w) be the adjugate matrix of ∆(z, w).

Proposition 4.4. The divisor Sv is the linear combination of points where the v-column of Q(z, w)
vanishes.

Proof. Let s denote the image of the section δv in L. The divisor Sv consists of the set of points
in C0 where s vanishes, that is, the points (z, w) ∈ C0 where δv is in the image of ∆(z, w). We
have Q(z, w)∆(z, w) = det∆(z, w)I = 0. Now δv ∈ im ∆(z, w) means that there exists f such that
∆(z, w)f = 0, which means that

Q(z, w)∆(z, w)f = Q(z, w)δv = 0,

which means the v-column of Q(z, w) vanishes.

Remark 4.5. In fact, since corank ∆(z, w) is one, it suffices to consider the simultaneous vanishing
of any two entries of the v-column of Q(z, w).

18



4.4 The image of the spectral transform

For positive conductances, Kenyon has identified the open spectral curves that appear. Since we
only need the first property, we do not give the definition of a simple Harnack curve here.

Theorem 4.6 ([Ken19]). For the space RN (R>0) of positive-real-valued points of RN , we have

1. C0 satisfies the three conditions of Proposition 2.7, and moreover the singular point (1, 1) is
a node;

2. C0 is a simple Harnack curve.

Let σ : (C×)2 → (C×)2 denote the involution (z, w) 7→ ( 1z ,
1
w ).

Lemma 4.7. The point at infinity ν(α) = σ(ν(α)).

Proof. If α is a zig-zag path and α is its conjugate, then ν(α) and ν(α) are defined by

ziwj(ν(α)) =
1

wt(α)
, z−iw−j(ν(α)) =

1

wt(α)
=

1

wt(α)

respectively, where (i, j) = [α] and we have used (3). On the other hand, the point σ(ν(α)) also
has coordinates

z−iw−j(σ(ν(α))) =
1

wt(α)
.

Remark 4.8. More precisely, since N is centrally symmetric, σ extends to a toric morphism
σ : XN → XN , and the σ in σ(ν(α)) refers to this extension.

Let W be the subspace of curves C with Newton polygon N satisfying the following conditions:

1. (1, 1) ∈ C and the point (1, 1) is a node of C;

2. σ
∣∣
C

is an involution on C. For concision, we will denote σ
∣∣
C

by σ.

Let π : Ĉ → C denote the normalization of C. Ĉ is a smooth curve such that π−1(1, 1) consists of

two points q1, q2 that are glued together by π, while π
∣∣
Ĉ−{q1,q2}

: Ĉ − {q1, q2} → C − {(1, 1)} is an

isomorphism. Therefore the involution σ of C lifts to an involution σ̂ of Ĉ such that q1, q2 are fixed
points; we denote this involution also by σ. If S is a degree g effective divisor on C −{(1, 1)}, then
Ŝ := π−1(S) is a degree g effective divisor in Ĉ.

Let S ′
N be the moduli space of triples (C, S, ν) such that C is a curve in W , S is a degree g

effective divisor on C − {(1, 1)} satisfying

Ŝ + σ̂(Ŝ)− q1 − q2 ∼ KĈ , (9)

where Ĉ is the normalization of C, KĈ is the canonical divisor class of Ĉ, and ν is a parameterization
of the points at infinity by zig-zag paths. The presence of the node (1, 1) means that a generic curve
in W has geometric genus g, one less than a generic curve with Newton polygon N .

We determine the image of the spectral transform. The proof is quite technical and undertaken
in Section 5.
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Theorem 4.9. We have ρG,v(RN ) ⊆ S ′
N .

Proof. 1. For all positive-real-valued conductances, Theorem 4.6 tells us that (1, 1) is a node.
Since nodes are characterized by non-vanishing of the Hessian, an open condition, (1, 1) is a
node for all points in a Zariski open subset of RN . Along with Proposition 2.7, we get C ∈W .

2. deg S = g is proved in Corollary 5.13.

3. Ŝ + σ̂(Ŝ)− q1 − q2 = KĈ is Corollary 5.12.

The condition (9) says that there exists a meromorphic 1-form on Ĉ that has zeros at the 2g

points Ŝ+ σ̂(Ŝ) and poles at q1, q2. We write down this 1-form explicitly in Proposition 4.10 below.
The proof is a technical computation of the zeros and poles of ω. Since the result is not used
elsewhere in the paper, it may be skipped.

Proposition 4.10. Let R(z, w) = Qv0,v0(z, w) be the minor of ∆(z, w) with the row and column
corresponding to v0 removed. The meromorphic 1-form

ω = π∗

(
R(z, w)dz

zw ∂P (z,w)
∂w

)
,

satisfies
divĈ ω = Ŝ + σ̂(Ŝ)− q1 − q2.

Remark 4.11. The 1-form ω also appears in [BdTR17, Proposition 31]. The 1-form R(z,w)dz

zw
∂P (z,w)

∂w

is

defined on C0, but since C −C0 is a finite collection of isolated points, a meromorphic form on C0

extends uniquely to C. ω is the pullback of this extension to Ĉ.

Proof of Proposition 4.10. For smooth (z, w) ∈ C, we have corank ∆(z, w) = 1. Therefore, we can
write R(z, w) = U(z, w)V (z, w)T for some U(z, w) ∈ ker ∆(z, w), V (z, w) ∈ coker ∆(z, w). By
definition, S is the set of points in C0 where the component V (z, w) · δv0 of V (z, w) vanishes. We
have ker ∆(z, w) ∼= coker ∆(z, w)T = coker ∆( 1z ,

1
w ), so σ(S) are the points where the component

U(z, w) · δv0 vanishes. Since R(z, w) = (U(z, w) · δv0)(V (z, w) · δv0), we have

divC0
R(z, w) = S + σ(S),

Since C has a node at (1, 1), ∂P (z,w)
∂w has a simple zero at (1, 1) and so ω has simple poles at

q1, q2. Therefore, the divisor of ω on the complement of the points at infinity is Ŝ + σ̂(Ŝ)− q1 − q2,
which has degree 2g − 2. It remains to identify the zeros and poles of ω at the points at infinity.

The order of vanishing of the 1-form

ωij :=
zi−1wj−1dz

∂P (z,w)
∂w

at the point at infinity corresponding to the primitive integral edge E is given by the twice the
signed area of the triangle formed by E and the point (i, j) minus one (where the area is positive for
points (i, j) inside N). R(z, w) is the partition function of OCRSFs on the graph G′ obtained from
G by removing the vertex v0. By Corollary 3.3, the Newton polygon of R(z, w) is strictly contained
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in N . Therefore, the order of vanishing of ω must be non-negative at all points at infinity, that is,
ω has no poles at these points. The divisor of ω on the complement of the points at infinity has
degree 2g−2 (Corollary 5.13), which is the degree of KĈ . Therefore, ω must have an equal number
of zeros and poles at the points at infinity, and therefore ω also has no zeros at infinity.

5 Holomorphic extension of the line bundle Laplacian to C

Recall that i : C0 ↪→ (C×)2 denotes the inclusion and π : Ĉ → C is the normalization map.
Consider the commuting diagram:

Ĉ0 C0 (C×)2

Ĉ C XN

π i

π

, (10)

where Ĉ0 := π−1(C0) is Ĉ minus the points at infinity. To prove Theorem 4.9, we need to use the
theory of divisors and line bundles on smooth Riemann surfaces. As we mentioned at the beginning
of Section 4, there were two obstructions that we have now addressed:

1. C0 is not compact: We compactified C0 to C;

2. C0 (resp. C) has a node at (1, 1): We resolved the node using a normalization to get Ĉ0 (resp.

Ĉ).

However, the line bundle i∗L used to define the spectral transform is still defined on C0, and we
would like to have a line bundle on Ĉ. Pulling back along π : Ĉ0 → C0, we get a line bundle π∗i∗L
on Ĉ0, but now there is no canonical way to extend a line bundle on Ĉ0 to Ĉ, since we can have
twists at the points of Ĉ−Ĉ0. However, since our line bundle comes from the line bundle Laplacian,
we will find a canonical extension by first extending the line bundle Laplacian holomorphically to
Ĉ.

We pull back (8) using π∗i∗ and use the right exactness of the pullback to get the following

exact sequence on Ĉ0: ⊕
v∈V (G)

OĈ0

π∗i∗∆−−−−→
⊕

v∈V (G)

OĈ0
→ π∗i∗L → 0. (11)

Now, we need to extend the trivial vector bundle
⊕

v∈V OĈ0
from Ĉ0 to Ĉ. As is usual in algebraic

geometry, we will often implicitly identify a line bundle, its invertible sheaf of holomorphic/regular
sections, and the divisor of a meromorphic section. We recall the correspondences in A.1 and refer,
for example, to [Mir95, Chapter XI] for details. Precisely, for each of the direct summands in⊕

v∈V (G) OĈ0
, we want an invertible sheaf F on Ĉ such that F

∣∣
Ĉ0

= OĈ0
. Every invertible sheaf

on Ĉ is of the form F = OĈ(D) for a divisor D in Ĉ, that is,

OĈ(D)(U) = {t ∈ K(Ĉ)× : div
∣∣
U
t+D

∣∣
U
≥ 0} ∪ {0},

where K(Ĉ)× is the space of nonzero rational functions on Ĉ. Letting U = Ĉ0, we see that

F
∣∣
Ĉ0

= OĈ0
means D

∣∣
U

= 0, so D is supported at the points at infinity of Ĉ. Therefore the
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extension of
⊕

v∈V (G) OĈ0
is given by a divisor at infinity of Ĉ for every vertex v ∈ V (G). The

divisors at infinity will be determined from the combinatorics of the resistor network via the discrete
Abel map of Fock [Foc15].

5.1 The discrete Abel map

Recall that we denote the zig-zag path oriented opposite to α by α, and that G̃ denotes the
biperiodic resistor network in the plane, that is the preimage of G under the universal covering
map p : R2 → T. Let V (G̃) and F (G̃) denote the set of vertices and faces of G̃. Let ZZ denote the

group of Z-linear combinations of zig-zag paths. Define d̃ : V (G̃) ∪ F (G̃) → ZZ as follows:

Set d̃(v0) = 0 for some vertex v0. For any vertex or face u, let γ̃ be a path from v0 to u in G̃.
Let

d̃(u) =
∑
α∈Z

∑
α̃∈p−1(α)

(α, γ)α,

where (·, ·) is the intersection pairing in the plane and the second sum is over all lifts of α̃ of α to

the plane. In other words, d̃(u) keeps track of zig-zag paths of G̃ crossed by any path from v0 to u.

As such, d̃ is defined on G̃, but is not well defined on G. Let u+ (i, j) denote the translate of u in

G̃ by iγz + jγw. Then we have

d̃(u+ (i, j))− d̃(u) =
∑
α∈Z

∑
α̃∈p−1(α)

(α, iγz + jγw)α

=
∑
α∈Z

([α], (i, j))Tα,

where (·, ·)T is the intersection pairing in T:

(·, ·)T : H1(T,Z)×H1(T,Z) → Z
((a, b), (c, d))T = ad− bc.

Therefore, we define the inclusion

ρ : H1(T,Z) ∼= Z2 ↪→ ZZ

h 7→
∑
α∈Z

([α], h)Tα.

Then d̃ is equivariant with respect to the H1(T,Z)-action, that is,

d̃(u+ h) = d̃(u) + ρ(h),

for all u ∈ V (G̃)∪F (G̃). Applying the parameterization ν of the points at infinity to ZZ , we think

of ZZ as divisors at infinity of Ĉ. To keep the notation concise, we will usually write α for the
point at infinity ν(α). Then the following proposition says that the image of the map ρ consists of
divisors of the monomials ziwj in (C×)2, and in particular ν ◦ ρ(h) is a prinicpal divisor for every
h ∈ H1(T,Z).

Proposition 5.1. We have ν ◦ ρ(i, j) = divĈ z
iwj .
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Proof. Let E be an edge of N and let (a, b) denote the primitive integral vector normal to E,
oriented towards the inside of N . By [CLS11, Proposition 4.1.1], the order of vanishing of ziwj at

the line at infinity DE of XN is ia + jb. Restricting to Ĉ, we get that the order of vanishing of
ziwj at a point at infinity α ∈ Z(E) is ia+ jb = ([α], (i, j))T.

Following Fock [Foc15], we define the discrete Abel map d : V (G)∪ F (G) → ZZ as follows: Let
v0 be a vertex of G. Let R be a fundamental rectangle as in Figure 6. For each vertex v ∈ V (G),

let ṽ denote the lift of v contained in R, and define d(v) to be d̃(ṽ).

Lemma 5.2. For all edges e : u→ v of G with pairs of oriented zig-zag paths α, α, β, β through e,
we have

d(v)− d(u) = −α− β + α+ β − divĈ z
(e,γz)Tw(e,γw)T .

Proof. Let ũ and ṽ be the lifts of u and v in R. Let ẽ denote the lift of e that is incident to ũ. Then
the other end point of ẽ is ṽ + ((e, γz)T, (e, γw)T). Therefore

d(v)− d(u) = d̃(ṽ)− d̃(ũ)

= d̃(ṽ + ((e, γz)T, (e, γw)T))− divĈ z
(e,γz)Tw(e,γw)T − d̃(ũ)

= −α− β + α+ β − divĈ z
(e,γz)Tw(e,γw)T .

Example 5.3. Let us compute the discrete Abel map for the network in Figure 2, with zig-zag
paths labeled as in Figure 4. We have (with v0 := v1):

d(v1) = 0,

d(v2) = −α− β + α+ β.

We also compute ρ : H1(T,Z) ↪→ ZZ :

(1, 0) 7→ −2α− 2β + 2α+ 2β

(0, 1) 7→ α− β − α+ β. (12)

5.2 Construction of the extension

Define the line bundles

Fv = OĈ

(
d(v)−

∑
α∈Z:v∈α

α

)
,

Gv =
⊕

v∈V (G)

OĈ(d(v)),

and the vector bundles
F =

⊕
v∈V (G)

Fv, G =
⊕

v∈V (G)

Gv.
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The sum in the definition of Fv is over all zig-zag paths that contain the vertex v. The meromor-
phic function ∆vu defines a meromorphic section ∆̂vu of the line bundle Hom(Fu,Gv) (see A.1.5).

Therefore, we get an extension of (11) to a meromorphic map of vector bundles on Ĉ

F ∆̂−→ G, (13)

which is a V (G)× V (G) matrix with entries ∆̂vu.

Remark 5.4. More precisely, Hom(F ,G) ∼=
⊕

u∈V (G)

⊕
v∈V (G) Hom(Fu,Gv), ∆̂ 7→ (∆̂vu)u,v∈V (G).

Theorem 5.5. The map ∆̂ is holomorphic, that is, for every u, v ∈ V (G), ∆̂vu is a holomorphic
section of Hom(Fu,Gv).

Proof. We need to show that for each v, w ∈ V , the component ∆̂vu is a holomorphic section of
Hom(Fu,Gv) ∼= OĈ

(
d(v)− d(u) +

∑
α∈Z:v∈α α

)
, that is div ∆vu + d(v)− d(u) +

∑
α∈Z:v∈α α ≥ 0.

By definition of the line bundle Laplacian ∆(z, w), we have

∆vu(z, w) =

{∑
e:v′→v:v′ ̸=v c(e) +

∑
e:v→v c(e)(1− z(e,γz)Tw(e,γw)T) if v = u;

−
∑
e:u→v c(e)z

(e,γz)Tw(e,γw)T otherwise.

When v ̸= u, recall that for each edge e : u→ v we have by Lemma 5.2 that

d(v)− d(u) = −β − δ + β + δ − div z(e,γz)Tw(e,γw)T ,

where β, δ, β, δ are the oriented zig-zag paths through e, with β, β and δ, δ the oppositely oriented
pairs. From this we get

div z(e,γz)Tw(e,γw)T + d(v)− d(u) +
∑

α∈Z:v∈α
α =

∑
α∈Z:v∈α,α̸=β,δ,β,δ

α ≥ 0,

so each z(e,γz)Tw(e,γw)T is a holomorphic section of OĈ

(
d(v)− d(u) +

∑
α∈Z:v∈α α

)
. Since ∆vu is a

linear combination of these, the same holds for it as well.
When v = u, ∆vu is a sum of constant terms in z, w and terms that involve z(e,γz)Tw(e,γw)T as

in the case u ̸= v. d(v) − d(u) +
∑
α∈Z:v∈α α =

∑
α∈Z:v∈α α ≥ 0 implies that the constant terms

are also holomorphic sections of OĈ

(
d(v)− d(u) +

∑
α∈Z:v∈α α

)
.

Let L̂ := coker ∆̂ and M̂ := ker ∆̂. The following commuting diagram shows how everything
fits together:

F G L̂ 0

⊕
v∈V (G) OĈ0

⊕
v∈V (G) OĈ0

π∗i∗L 0

∆̂

π∗i∗∆

The downward maps are all restriction from Ĉ to Ĉ0.
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5.3 Proof of Theorem 4.9

By Proposition 4.4, we know that the divisor S is given by the simultaneous vanshing of the v0-
column of the adjugate matrix Q(z, w) of ∆(z, w). We need the following elementary linear algebra
fact.

Proposition 5.6. If A is an n × n matrix of rank n − 1 and U, V are the matrices of the kernel
and cokernel maps:

0 → C U−→ Cn A−→ Cn V−→ C → 0.

Then adj A = UV T .

Since ∆(z, w) has corank one, by Proposition 5.6, we get thatQ(z, w) is of the form U(z, w)V (z, w)T

where U(z, w) and V (z, w) are the matrices of the kernel and cokernel maps. Therefore, Qv0,v0(z, w) =
Uv0(z, w)Vv0(z, w). By definition, the divisor S is the set of points where Uv0(z, w) = 0. Taking
transpose and using the symmetry ∆(z, w)T = ∆( 1z ,

1
w ), the set of points where Vv0(z, w) = 0 is

σ(S). Therefore, Qv0,v0(z, w) = 0 at the points of S + σ(S), which is the divisor in (9).

Our strategy is to study the adjugate matrix Q̂ of ∆̂. Since ∆̂ is an extension of π∗i∗∆, we have

div
∣∣
Ĉ0
Q̂v0,v0 = Ŝ + σ̂(Ŝ).

By analyzing the behaviour of Q̂v0,v0 at the points at infinity of Ĉ, we can compute its divisor

explicitly (Corollary 5.11). On the other hand, Q̂v0,v0 is an exterior power of (13), which will give
us an expression for its divisor class (Corollary 5.8). Comparing the two will give us (9).

A toric divisor on the toric surface XN is a formal linear combination of the lines at infinity
DE of XN . There are two special toric divisors that will play a role in our computations below.

1. The polygon N determines a divisor DN as follows [CLS11, (4.2.7)]: Let uE denote the
primitive integral vector normal to E, and let aE ∈ Z denote the distance from the origin to E
along the direction of uE (precisely, aE is defined such that E is on the line ⟨(i, j), uE⟩ = −aE ,
where ⟨·, ·⟩ is the standard inner product).

2. The canonical divisor of XN is KXN
= −

∑
E edge of N DE [CLS11, Theorem 8.2.3].

Taking the determinant of (13), we get a holomorphic map det ∆̂ :
∧
v∈V (G) Fv →

∧
v∈V (G) Gv, that

is det ∆̂ is a holomorphic section of

Hom

 ∧
v∈V (G)

Fv,
∧

v∈V (G)

Gv

 ∼= Hom

 ∧
v∈V (G)

OĈ

(
d(v)−

∑
α∈Z:v∈α

α

)
,
∧

v∈V (G)

OĈ(d(v))


∼= OĈ

 ∑
v∈V (G)

(d(v))−
∑

v∈V (G)

(
d(v)−

∑
α∈Z:v∈α

α

) , (14)

where we have used Proposition A.4 to get the second isomorphism. We wish to identify this line
bundle. The restriction DN

∣∣
C

of DN to C is a divisor at infinity of C. Therefore, π−1(DN

∣∣
C
) is a

divisor at infinity of Ĉ.

Proposition 5.7. det ∆̂ is a holomorphic section of OĈ(π
−1(DN

∣∣
C
)).
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Proof. Recall that DN =
∑
E edge of N aEDE , where aE ∈ Z is the distance from the origin to E

along the primitive normal vector to E. Therefore,

DN |Ĉ =
∑

edges E of N

aEDE ∩ Ĉ

=
∑

edges E of N

∑
α∈Z:[α]∈E

aEα,

where the inner sum is over all zig-zag paths α such that [α] is a primitive vector in E. By (14),
we need to show that

∑
v∈V (G)

(d(v))−
∑

v∈V (G)

(
d(v)−

∑
α∈Z:v∈α

α

)
= π−1(DN |Ĉ).

Let β be a zig-zag path, let (i1, i2) be a vertex of N incident to the edge of N corresponding to
β and let F be the corresponding extremal OCRSF. From our description of extremal OCRSFs
(Theorem 3.2), we know that for each vertex u ∈ V (G), there is a unique outgoing edge eu and
that if β contains u, then eu ∈ β. We pair vertices of G using ev to rewrite the sum as∑

e:u→v∈F
d(v)− d(u) +

∑
α∈Z:u∈α

α.

Now we observe that if e ∈ β, then β appears twice in the summand with opposite signs and if e /∈ β,
then β does not appear in the summand, modulo contributions from the edges of F intersecting
γz, γw. This latter contribution is given by

−
∑
e∈F

div z(e,γz)Tw(e,γw)T = −z(i1,γz)Tw(i2,γw)T

= aE .

Let Q̂ denote the adjugate matrix of ∆̂. Then Q̂vu is a holomorphic map Q̂ :
∧
w∈V (G)−{u} Fw →∧

w∈V (G)−{v} Gw, that is a holomorphic section of

Hom

 ∧
w∈V (G)−{u}

Fw,
∧

w∈V (G)−{v}

Gw


∼= OĈ

 ∑
w∈V (G)−{u}

(d(w))−
∑

w∈V (G)−{v}

(
d(w)−

∑
α∈Z:w∈α

α

)
∼= OĈ

(
DN

∣∣
Ĉ
− d(v) + d(u)−

∑
α∈Z:u∈α

α

)
,

where the first isomorphism is using Proposition A.4, and the second isomorphism is from Propo-
sition 5.7.
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Corollary 5.8. Q̂vu is a holomorphic section of OĈ

(
π−1(DN

∣∣
Ĉ
)− d(v) + d(u)−

∑
α∈Z:u∈α α

)
.

Example 5.9. Going back to our example in Figure 2, we check that the Laplacian that we
computed in (7) extends to a morphism of vector bundles (computed using the discrete Abel map
in Example 5.3):

O(−α− β − α− β)⊕O(−2α− 2β) → O⊕O(−α− β + α+ β). (15)

We have ∆(z, w)v1v2 = −a− bz, which we wish to show corresponds to a regular section of O(2α+
2β). We check the following.

div a+ 2α+ 2β = 0 + 2α+ 2β ≥ 0,

div bz + 2α+ 2β = (−2α− 2β + 2α+ 2β) + 2α+ 2β

= 2α+ 2β ≥ 0,

where we have used div z = −2α− 2β + 2α+ 2β from (12) and Proposition 5.1. The other entries
of ∆(z, w) can be checked in the same way.

Consider the edge E corresponding to the zig-zag path β in Figure 4. The primitive normal
vector is uE = (−2,−1). Then aE is defined as the intercept of the line containing E:

E ⊂ {(i, j) ∈ R2 : −2i− j + aE = 0}.

Since (1, 0) ∈ E, we get aE = 2. Similarly computing the intercepts for the other zig-zag paths, we
get

DN = 2α+ 2β + 2α+ 2β.

On the other hand, taking the determinant of (15), we compute the determinant line bundle
using Proposition A.4 to be

Hom
(
O(−α− β − α− β) ∧ O(−2α− 2β),O ∧O(−α− β + α+ β)

)
∼= O(2α+ 2β + 2α+ 2β),

verifying the conclusion of Lemma 5.7.

Corollary 5.8 tells us the linear equivalence class of divĈ Q̂. Next we perform a careful analysis

of the behaviour of Q̂uv at the points at infinity of Ĉ to determine its divisor. Consider the exact
sequence

0 → M̂


|
sv
|


−−−→ F ∆̂−→ G

[
−tv−

]
−−−−−−→ L̂ → 0,

where sv is the holomorphic section of Hom(M̂,Fv) given by the v-entry of the kernel map and tv
is the holomorphic section of Hom(Gv, L̂) given by the v-entry of the cokernel map. By Proposition

5.6, we have Q̂uv = su · tv, so we compute the divisors of sv and tv.
Recall that Sv is the effective divisor given by the vanishing of the v-column of Q(z, w) and

Ŝv = π−1(Sv).
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Proposition 5.10. We have

divĈ sv = σ̂(Ŝv) +
∑

α∈Z:u/∈α

α;

divĈ tv = Ŝv.

Proof. Let α be a zig-zag path. Let U be a neighbourhood of the associated point at infinity α of
Ĉ that does not contain any other points at infinity. Let x be a local parameter with a simple zero
at α. We trivialize the line bundles in (13) as follows:

O(−kα)(U)
∼=−→ O(U)

f 7→ x−kf

Let z = axm+O(xm+1) and w = bxn+O(xn+1) be the expansions in the local coordinate x, where
O(xl) denotes a function vanishing to order at least l. Let us order the vertices so that the vertices

in the zig-zag path α appear first. Then near the point α of Ĉ, ∆̂ has the following block form:

∆̂ =

(
∆1 B
xA ∆2

)
+O(x),

where ∆1 is the restriction of ∆̂ to the zig-zag path α and ∆2 is the restriction to the rest of G,
and where z and w are replaced with a and b respectively. Since we are at α, ∆1 is singular. For
smooth Ĉ, dimker ∆1 = 1 and ∆2 is invertible.

Let g ∈ ker ∆∗
1. Then we have

ker ∆̂T = (g,−(∆T
2 )

−1BT g) +O(x).

Since generically none of the entries in ker ∆̂T is 0, and since these entries are the cofactors of ∆̂,
we see that tv has no poles or zeros at α. Since α was arbitrary, tv has no zeros or poles at infinity.

Now let g ∈ ker ∆1. We have

ker ∆̂ = (g,−x∆−1
2 Ag) +O(x),

from which we see that su has a simple zero at α if u /∈ α and no zeros or poles at α if u ∈ α.

Now, since Q̂uv = su · tv, we get:

Corollary 5.11. The divisor of Q̂vu is divĈ Q̂vu = Ŝv + σ̂(Ŝu) +
∑
α∈Z:u/∈α α.

Corollary 5.12. We have Ŝ + σ̂(Ŝ)− q1 − q2 ∼ KĈ .

Proof. From Corollary 5.8 and Corollary 5.11, we get that

divĈ Q̂v0v0 = Ŝ + σ̂(Ŝ) +
∑

α∈Z:u/∈α

α ∼ π−1(DN

∣∣
C
)− d(v) + d(u)−

∑
α∈Z:u∈α

α,

rearranging which we get

Ŝ + σ̂(Ŝ)− q1 − q2 ∼ π−1(DN

∣∣
C
)−

∑
α∈Z

α− q1 − q2.
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Recall that the canonical divisor of the toric variety XN is given by KXN
= −

∑
E edge of N DE . By

the adjunction formula for nodal curves [ACGH85, Appendix A.8], we have

KĈ = π−1

(
−
∑
E

DE +DN

)∣∣∣∣∣
C

− q1 − q2

= π−1(DN

∣∣
C
)−

∑
α∈Z

α− q1 − q2.

Corollary 5.13. deg Sv = g for all v ∈ V (G).

Proof. We take degrees on both sides of Ŝv + σ̂(Ŝv)− q1 − q2 ∼ KĈ , and use deg KĈ = 2g− 2.

6 Inverse spectral transform

In this section, we construct the inverse spectral transform using theta functions on the Prym
variety of (Ĉ, σ̂).

6.1 Curves and their Jacobians

In this section, we review some results about the Jacobian variety. For further details, we refer to
the books [Fay73,Mum07a,Mum07b].

Let C be a compact Riemann surface/smooth curve of genus g. Let (Ai, Bi)
g
i=1 be a canonical

basis for H1(C,Z), so that

Ai ·Aj = 0, Bi ·Bj = 0, Ai ·Bj = δij ,

where · is the intersection pairing on C. Let KC denote the canonical divisor of C (i.e. the divisor
class of 1-forms) and let (ωi)

g
i=1 be the basis of the vector space H1(C,KC) of holomorphic 1-forms,

dual to (Ai, Bi)
g
i=1: ∫

Ai

ωj = δij .

We have the period map

per : H1(C,Z) ↪→ Cg

γ 7→
(∫

γ

ωi

)g
i=1

,

identifying H1(C,Z) with a lattice in Cg, called the period lattice. The Jacobian variety of C is
defined as

J(C) := Cg/per(H1(C,Z)).
If q is a base point, we define the Abel map:

I : C → J(C)

x 7→
(∫ x

q

ωi

)g
i=1

modulo per(H1(C,Z)).
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The d-fold symmetric product of C is defined as C(d) := Cd/Sd, the quotient of Cd by the natural
action of the symmetric group or equivalently, the space of degree d effective divisors on C. The
Abel map naturally extends to C(d):

I : C(d) → J(C)

d∑
i=1

xi 7→
d∑
i=1

(I(xi)).

For a divisor D, the complete linear system |D| is the space of divisors linearly equivalent to D:

|D| := {E ∈ C(d) : E ∼ D}.

Equivalently |D| is the space of holomorphic sections of OC(D) modulo multiplication by a nonzero
complex number

|D| = (H0(C,OC(D))− 0)/C× = PH0(C,OC(D)),

because if E ∼ D is a degree d effective divisor, then E −D ∼ 0 is a principal divisor, so E −D =
divC t for a meromorphic function t on C. The meromorphic function t gives a meromorphic section
t̃ of OC(D) (see A.1.5) with divisor

divC t̃ = divC t+D = E.

Theorem 6.1 (Abel’s theorem). Two effective divisors D1 and D2 of degree d on a smooth curve
C are linearly equivalent if and only if I(D1) = I(D2). Equivalently, the fibers of the Abel map are
complete linear systems:

I−1(I(D)) = |D|.

Theorem 6.2 (Jacobi inversion theorem). Let C be a smooth curve of genus g. The Abel map
I : C(g) → J(C) is surjective and birational. Therefore, for a generic degree g effective divisor D,
the complete linear system I−1(I(D)) = |D| is a point.

Corollary 6.3. If D is a generic degree g effective divisor, then the line bundle OC(D) has a
unique holomorphic section modulo multiplication by a nonzero complex number.

6.2 The prime form

We follow [Mum07b, IIIb §1] and [Fay73, II]. Morally, the prime form should be a holomorphic
function E : C × C → C on a compact Riemann surface C such that E(x, y) = 0 if and only if
x = y. However, such a function cannot exist on a compact Riemann surface because a holomorphic
function on C must have an equal number of zeros and poles, but it does exist as a holomorphic
section of a line bundle on C × C. Let ∆ ⊂ C × C be the diagonal (we only use this notation in
this section, so there should be no confusion with the Laplacian).

Theorem 6.4. There exists a unique holomorphic section E of OC×C(∆), called the prime form,
such that

1. E(x, y) = 0 if and only if x = y.

2. E has a first order zero along ∆.
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3. E(x, y) = −E(y, x).

4. E(x, y) vanishes like x− y for x, y near ∆.

For a divisor D =
∑
i ai −

∑
j bj on Ĉ, we define

ED(x) :=

∏
iE(x, ai)∏
j E(x, bj)

. (16)

It is a section of the line bundle OĈ(D) with divĈ ED(x) = D. Let D =
∑
i nixi be a divisor of

degree 0. There is a unique differential 1-form denoted ωD on C with

1. zero A-periods, i.e.,
∫
Ai
ωD = 0 for all i = 1, . . . , g;

2. simple poles with residue ni at pi.

Then, ωD(x) = d logxED(x) [Fay73, (21)], integrating which we get

e
∫ x
q
ωD =

ED(x)

ED(q)
. (17)

6.3 Prym varieties

For further background on the material collected here, see [Fay73,Fay89,Tăı97].

Let Ĉ be a smooth curve of genus g with a holomorphic involution σ : Ĉ → Ĉ with two fixed
points q1, q2. Let x := σ(x) denote the conjugate point of x ∈ Ĉ. Let p : Ĉ → Ĉ/σ denote the
ramified double cover, with branch points at q1, q2. We can choose a canonical homology basis for
H1(Ĉ,Z)

A1, B1, A2, B2, . . . Ag, Bg,

such that (p∗Ai, p∗Bi)
g
2
i=1 is a basis for H1(Ĉ/σ,Z), and such that

σ∗Ai +Ai+ g
2
= σ∗Bi +Bi+ g

2
= 0, 1 ≤ k ≤ g

2
. (18)

Let (u1, . . . , ug) denote the basis of holomorphic differentials forms (i.e. basis of H0(Ĉ,KĈ)) on Ĉ
dual to (Ai, Bi)

g
i=1, so that ∫

Ai

uj = δij .

Then for 1 ≤ j ≤ g
2 , we have

σ∗uj + uj+ g
2
= 0, (19)

because ∫
Ai

(−σ∗uj) = −
∫
σ∗Ai

σ∗σ∗uj

= −
∫
−Ai− g

2

uj (using (18) and σ2 = id, so (σ∗)2 = id)

= δi,j+ g
2
,
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which is the property that characterizes uj+ g
2
.

A holomorphic differential form ω on Ĉ is called a Prym differential if σ∗ω = −ω (i.e. Prym

differentials form the (−1)-eigenspace of σ∗ : H0(Ĉ,KĈ) → H0(Ĉ,KĈ)). For 1 ≤ j ≤ g
2 , ωj :=

uj + uj+ g
2
is a Prym differential because

σ∗ωj + ωj = σ∗uj + uj + σ∗uj+ g
2
+ uj+ g

2

= 0

using (19). Moreover, it follows from (19) that (ωj)
g
2
j=1 is a basis for the vector space of Prym

differentials on Ĉ. Let Π be the matrix of periods of the Prym differentials around the B-cycles of
Ĉ:

Πjk =

∫
Bk

ωj , 1 ≤ j, k ≤ g

2
.

The Prym variety Pr(Ĉ, σ) is defined to be C
g
2 /(Z

g
2 +ΠZ

g
2 ).

Let J(Ĉ) denote the Jacobian of Ĉ, and let I : Ĉ → J(Ĉ) be the Abel map with base-point

q0 ∈ Ĉ. The involution σ induces an involution σ∗ : J(Ĉ) → J(Ĉ): Given ζ ∈ J(Ĉ), let D ∈ Ĉ(g)

(which exists by Theorem 6.2) such that I(D) = ζ, and define σ∗(ζ) := I(σ(D)). In coordinates,
the induced map σ∗ is given by

(z1, . . . , zg) 7→ (−z g
2+1, . . . ,−zg,−z1, . . . ,−z g

2
).

The Prym variety is embedded in the Jacobian via ϕ : Pr(Ĉ, σ) ↪→ J(Ĉ) :

(z1, . . . , z g
2
) 7→ (z1, . . . , z g

2
, z1, . . . , z g

2
).

We also have the projection π1 : J(Ĉ) → Pr(Ĉ, σ) given by

π1(z1, . . . , zg) = (z1 + z g
2+1, . . . , z g

2
+ zg).

For ζ ∈ ϕ(Pr(Ĉ, σ)), we have

ζ =
1

2
ϕ ◦ π1(ζ). (20)

Therefore, if ϕ(e) = ζ, then we can recover e as

e =
1

2
π1(ζ). (21)

Define the Abel-Prym map with base-point q1:

IP : Ĉ → Pr(Ĉ, σ)

x 7→
(∫ x

q1

ω1, . . . ,

∫ x

q1

ω g
2

)
modulo Z

g
2 +ΠZ

g
2 , for x ∈ Ĉ,

so that we have IP = π1 ◦ I and IP (σ(x)) = −IP (x).
The Prym theta function η(z) is defined by

η(z) =
∑
m∈Z

g
2

e2πim
T z+πimTΠm, z ∈ C

g
2 .
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While η(z) is called a function, it is only quasiperiodic under translations by Z
g
2 + ΠZ

g
2 , and

therefore, is actually a holomorphic section of a line bundle on Pr(Ĉ, σ). The key property of the
Prym theta function is the following Prym analog of Riemann’s theorem for the Jacobian.

Theorem 6.5 ([Fay73, Corollary 5.6]). If e ∈ Pr(Ĉ, σ), then either:

1. η(IP (x)− e) = 0 for all x ∈ Ĉ, or

2. (generic case) divĈη(IP (x)− e) = S is a degree g effective divisor satisfying

ϕ(e) = I(S)− 1

2
I(q1)−

1

2
I(q2)−

1

2
I(KĈ) ∈ J(Ĉ),

and
S + σ(S)− q1 − q2 ∼ KĈ ,

where KĈ is the canonical divisor of Ĉ.

Proposition 6.6. If S ∈ Ĉ(g) such that

S + σ(S)− q1 − q2 ∼ KĈ ,

then

I(S)− 1

2
I(q1)−

1

2
I(q2)−

1

2
I(KĈ) ∈ ϕ(Pr(Ĉ, σ)).

Therefore, I(S) is contained in a translate of the Prym variety inside the Jacobian J(Ĉ).

Proof. From the definition of the embedding ϕ, we have

ϕ(Pr(Ĉ, σ)) = {ζ ∈ J(Ĉ) : σ∗ζ + ζ = 0}

We check that

I(S)− 1

2
I(q1)−

1

2
I(q2)−

1

2
I(KĈ) + σ∗

(
I(S)− 1

2
I(q1)−

1

2
I(q2)−

1

2
I(KĈ)

)
= I(S + σ(S))− I(q1)− I(q2)− I(KĈ)

= 0,

where we have used σ∗I(KĈ) = I(KĈ) (if div ω = KĈ , then div σ∗ω = σ∗KĈ , and then use
Theorem 6.1).

The following theorem is the Prym version of Fay’s trisecant identity for the Jacobian.

Theorem 6.7 (Fay’s quadrisecant identity [Fay89]). Let t ∈ Pr(Ĉ, σ), x ∈ Ĉ and suppose α, β, γ ∈
Ĉ. Then

η(t− IP (β)− IP (γ))η(t+ IP (x)− IP (α))
E(x, α)

E(x, α)

E(α, β)E(α, γ)

E(α, β)E(α, γ)
+ cyclic rotations

= η(t)η (t+ IP (x)− IP (α)− IP (β)− IP (γ))
E(x, α)E(x, β)E(x, γ)

E(x, α)E(x, β)E(x, γ)
,

where cyclic rotations refers to cyclic rotations of the triple (α, β, γ).

Remark 6.8. The statement of Theorem 6.7 appears without the explicit constants in [Tăı97, 6.3.1].
The constants can be found from [Fay89, (37)] by letting n = 2, y1 = x, x1 = α, x2 = β, x3 = γ.

33



6.4 The cokernel map

The first step in the construction of the inverse spectral transform is to write the cokernel map in
terms of Prym theta functions. We start by identifying the cokernel line bundle L̂.
Proposition 6.9. The cokernel line bundle L̂ ∼= OĈ(Ŝ) so it has degree equal to g. Moreover,

Ŝv + d(v) ∼ Ŝu + d(u),

for all u, v ∈ V (G).

Proof. From the definition, we have Gv0 = OĈ , so that tv0 is a holomorphic section ofHom(Gv0 , L̂) ∼=
L̂. By Proposition 5.10, we have divĈ tv0 = Ŝ, so we get L̂ ∼= OĈ(Ŝ).

Similarly, tv is a holomorphic section of

Hom(Gv, L̂) = Hom(OĈ(d(v)), L̂)
∼= L̂ ⊗OĈ(d(v))

∨

∼= OĈ(Ŝ − d(v)). (22)

Therefore, by Proposition 5.10, divĈ tv = Ŝv ∼ Ŝ− (d(v)), which implies that Ŝv+d(v) ∼ Ŝu+d(u)
is equal for all u, v ∈ V (G).

Each component of the cokernel map is given by a meromorphic section ofOĈ(Ŝ) with prescribed
order of vanishing at infinity. We will now give an explicit formula for this meromorphic section in
terms of theta functions on Prym(Ĉ, σ̂).

We define the discrete Abel-Prym map

dP : V (G̃) ∪ F (G̃) → Pr(Ĉ, σ̂)

dP =
1

2
IP ◦ d.

Since IP = π1 ◦ I, using (20) we have

ϕ ◦ dP =
1

2
ϕ ◦ π1 ◦ I ◦ d = I ◦ d. (23)

By Corollary 5.12 and Proposition 6.6, I(Ŝ) is in a translate of the Prym variety, and using (21),

the point e ∈ Pr(Ĉ, σ̂) is given by e = 1
2π1

(
I(Ŝ)− 1

2I(q1)−
1
2I(q2)−

1
2I(KĈ)

)
. Following [Dol07,

(3.20)], define for each vertex or face u ∈ V (G̃) ∪ F (G̃) the meromorphic function

ψu(x) :=
η(IP (x) + dP (u)− e)η(−e)
η(dP (u)− e)η(IP (x)− e)

e
∫ x
q1
ω

d̃(u)

=
η(IP (x) + dP (u)− e)η(−e)
η(dP (u)− e)η(IP (x)− e)

Ed̃(u)(x)

Ed̃(u)(q1)
. (24)

where the equality of the two expressions is due to (17). By Theorem 6.5, we see that

divĈ ψu(x) = Ŝu − Ŝ + d̃(u),

where Ŝu is the degree g effective divisor such that S̃u + d̃(u) ∼ Ŝ, so ψu defines a meromorphic

section of OĈ(Ŝ) with divisor Ŝu + d̃(u) (cf. A.1.5).
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Remark 6.10. The first form in 24 is the form that appears in [Dol07], while the second is, up to
normalization, the form that appeared in earlier versions of this article.

We describe the normalization map π explicitly in terms of the prime form. Recall the embedding
ρ : H1(T,Z) → ZZ .

Lemma 6.11. The following diagram commutes (dashed arrows indicate rational maps, i.e., maps

that are only defined on a dense open subset of Ĉ):

Ĉ

C0 (C×)2

C XN

x7→(Eρ(1,0)(x),Eρ(0,1)(x))

π

Proof. The functions z and w on (C×)2 restrict to functions i∗z and i∗w on C0, which are meromor-

phic functions on C, and pull back to meromorphic functions π∗i∗z and π∗i∗w on Ĉ. By Proposition
5.1, we have

divĈ π
∗i∗z = divĈ Eρ(1,0)(x),

so they are the same up to multiplication by a constant. Since Eρ(1,0)(q1) = π∗i∗z(q1) = 1, the
multiplicative constant is 1, and therefore, we have π∗i∗z = Eρ(1,0)(x). By the same argument
applied to w, we get π∗i∗w = Eρ(0,1)(x).

Corollary 6.12. The functions ψu are quasiperiodic with respect to the action of H1(T,Z):

ψu+(i,j) = π∗i∗(ziwj)ψu.

Proposition 6.13. Suppose e ∈ Pr(Ĉ, σ̂) is generic and Ŝ := divĈη(IP (x) − e) (cf. Proposi-

tion 6.5). Then ψu is the unique section of OĈ(Ŝ) with

divĈ0
ψu ≥ 0,

divĈ∩DN
ψu = d̃(u),

ψu(q1) = 1.

Proof. By Corollary 6.3, the section of OĈ(Ŝ) satisfying the properties in the statement of the
proposition is unique, so it suffices to show that ψu has these properties. By Corollary 5.12 and
Proposition 6.6, we have

I(Ŝ)− 1

2
I(q1)−

1

2
I(q2)−

1

2
I(KĈ) ∈ ϕ(Prym(Ĉ, σ)),

Using (20) and (23), we get ϕ(e) = I(Ŝ) − 1
2I(q1) −

1
2I(q2) −

1
2I(KĈ). Therefore, by Theorem 6.5

and (23), Ŝu := divĈ η(IP (x) + dP (u)− e) is a degree g effective divisor satisfying

I(Ŝu) = I(Ŝ)− I(d̃(u)).
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u v

f2
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αβ

Figure 8: Vertices, faces and zig-zag paths in the definition of the conductance function in (26).

Using (16), we get

divĈ ψu = Ŝu + d̃(u). (25)

Plugging in x = q1 in (24) gives ψu(q1) = 1.

6.5 Construction of the inverse

Now we define the inverse spectral transform. Let uv be an edge in G̃, f1 and f2 be the faces
adjacent to uv and let α, β be the zig-zag paths as shown in Figure 8. Define the conductance
function [Dol07, (3.24)]

c(uv) :=
η(dP (u)− e)η(dP (v)− e)

η(dP (f1)− e)η(dP (f2)− e)
e
∫ α
q1
ωβ−β

=
η(dP (u)− e)η(dP (v)− e)

η(dP (f1)− e)η(dP (f2)− e)

E(α, β)E(q1, β)

E(α, β)E(q1, β)
. (26)

Remark 6.14. We note the similarity of (26) with [GK13, (58)] relating the conductances with
the variables that transform like the cube recurrence, which is how we first discovered it before
learning of [Dol07].

Lemma 6.15. The conductance function c(uv) has the following properties:

1. c(uv) = c(vu);

2. c(uv) is compatible with taking the dual graph, that is, c(f1f2) = 1
c(uv) , where f1f2 denotes

the edge of G∨ dual to uv.

Proof. For the first item, notice that exchanging u and v corresponds to letting α 7→ α, β 7→ β in

e
∫ α
q1
ωβ−β . The η-factors are the same, so we need to show that∫ α

q1

ωβ−β =

∫ α

q1

ωβ−β .

Using the involution σ, we get ∫ α

q1

ωβ−β =

∫ α

q1

σ∗ωβ−β ,
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and now notice that q1 = q1 and that σ∗ωβ−β has simple poles with residue 1 (resp., −1) at β (resp.,
β). Moreover, the A-periods of σ∗ωβ−β are 0 due to σ∗Ai = −Ai+ g

2
(18). Since these properties

characterize ωβ−β , we have σ∗ωβ−β = ωβ−β .
For the second item, the η-factors are clearly reciprocals, so we need to show that∫ β

q1

ωα−α = −
∫ α

q1

ωβ−β . (27)

We have
∫ α
q1
ωβ−β =

∫ α
q1
ωβ−β = −

∫ α
q1
ωβ−β =

∫ q1
α
ωβ−β (use ωx−y = −ωy−x for the second equal-

ity). Therefore, ∫ α

α

ωβ−β =

∫ q1

α

ωβ−β +

∫ α

q1

ωβ−β = 2

∫ α

q1

ωβ−β .

Therefore, (27) is equivalent to ∫ β

β

ωα−α =

∫ α

α

ωβ−β ,

which follows from the “interchange law”
∫ y
x
ωb−a =

∫ b
a
ωx−y (proved by exponentiating both sides

and using (17); see [Fay73, (22)]).

Proposition 6.16. [Dol07, Corollary 14] Suppose e ∈ Pr(Ĉ, σ̂) is generic and ψ is defined as in

(24). Let u, v, f1, f2 be the vertices and faces of G̃ as in Figure 8. Then,

c(uv)(ψv − ψu) = ψf2 − ψf1 . (28)

Proof. We normalize so that d̃(u) = 0. The discrete Abel map in Figure 8 is

d̃(u) = 0, d̃(v) = α+ β − α− β, d̃(f1) = β − β, d̃(f2) = α− α,

so that

ψu(x) = 1,

ψv(x) =
η(IP (x) + dP (v)− e)η(−e)
η(dP (v)− e)η(IP (x)− e)

E(x, α)E(x, β)

E(x, α)E(x, β)

E(q1, α)E(q1, β)

E(q1, α)E(q1, β)
,

ψf1(x) =
η(IP (x) + dP (f1)− e)η(−e)
η(dP (f1)− e)η(IP (x)− e)

E(x, β)

E(x, β)

E(q1, β)

E(q1, β)
,

ψf2(x) =
η(IP (x) + dP (f2)− e)η(−e)
η(dP (f2)− e)η(IP (x)− e)

E(x, α)

E(x, α)

E(q1, α)

E(q1, α)
.

Using IP (α) + dP (f2) = dP (u) (using IP (α) = −IP (α), we have IP (α) =
1
2IP (α − α) = −dP (f2))

etc, we get

lim
x→α

ψf2(x)

ψv(x)
= c(uv), lim

x→β

ψf1(x)

ψv(x)
= −c(uv). (29)

By Proposition 6.13, we know that c(uv)(ψv − ψu) − (ψf2 − ψf1) is a meromorphic section of

OĈ(Ŝ) and the possible poles are at α and β. However, (29) says that the poles at α (resp., β)
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v1

v2

v3

u

. . .

Figure 9: The local configuration near a vertex u

in c(u, v)ψv and −ψf2 (resp., c(u, v)ψv and ψf1) cancel out, so c(uv)(ψv − ψu) − (ψf2 − ψf1) is a

holomorphic section of OĈ(Ŝ). However, by Proposition 6.13, ψu is the unique holomorphic section

of OĈ(Ŝ) modulo a multiplicative constant, so c(uv)(ψv −ψu)− (ψf2 −ψf1) = constant ·ψu. Since
ψu(q1) = 1 and (c(uv)(ψv − ψu)− (ψf2 − ψf1))(q1) = 0, the constant is 0.

Remark 6.17. The equation (28) is simply saying that ψu is in the cokernel of the Kasteleyn
matrix of the dimer model ΓG associated to G by Temperley’s bijection.

Theorem 6.18. The rational map ρG,v0 : (C, S, ν) 7→ (c(uv))uv∈E defined in (26) is the inverse of
κG,v0 .

Proof. 1. κG,v0 ◦ ρG,v0 = id: Let (C, S, ν) ∈ S ′
N , and let c = ρG,v0(C, S, ν). We wish to show

that κG,v0(c) = (C, S, ν).

Assume κG,v0(c) = (C ′, S′, ν′). Let u be a vertex in G and let v1, . . . , vn be the vertices
adjacent to u in G as shown in Figure 9. Summing the equations (28) for each edge incident
to u, we get ∑

vk∼u
c(uvk)(ψu(x)− ϕ(vku)

−1ψvk(x)) = 0, (30)

where the extra factor of ϕ(vku)
−1 is because u, vk are vertices in G rather than G̃ (see

Corollary 6.12). Therefore, if x ∈ C0, then ∆(z, w)
∣∣
x
has nonzero cokernel, so x ∈ C ′

0. Since
C ′ and C are two curves with the same Newton polygon that have an infinite number of
points in common, C ′ = C.

By (30), the composition F ∆̂−→ G (ψu)u∈V−−−−−→ OĈ(Ŝ) is 0. By the universal property of cokernels,

there is a unique map of line bundles OĈ(Ŝ
′) → OĈ(Ŝ), which corresponds to a global section

of OĈ(Ŝ − Ŝ′). Since deg OĈ(Ŝ − Ŝ′) = 0 and the only line bundle with degree 0 that has a

global section is the trivial line bundle, Ŝ ∼ Ŝ′. By Corollary 6.3, Ŝ = Ŝ′, so S = S′.

Finally, we check that ν = ν′. Suppose α is a zig-zag path with [α] = (i, j). Then from (26),
we have

wt(α) =
∏
β∈Z

E(x, β)((i,j),[β])T .
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By Lemma 6.11,

(π∗i∗(ziwj))(x) = Eρ(i,j)(x)

=
∏
β∈Z

E(x, β)([β],(i,j))T (using (16))

=
∏
β∈Z

E(x, β)−((i,j),[β])T ,

so (π∗i∗(ziwj))(α) = 1
wt(α) .

2. ρG,v0◦κG,v0 = id: Suppose c is a conductance function and κG,v0(c) = (C, S, ν). Let v ∈ V (G).

By (22), the entry tv of the matrix of the cokernel map is a holomorphic section ofOĈ(Ŝ−d(v)),
with divĈ tv = Ŝv. By Proposition 6.9 and Theorem 6.2, S′ = Ŝv. Since divĈ δv = d(v), we
get using (25) that

divĈ(δv 7→ ψv) = Ŝv.

By Corollary 6.3, tv is uniquely determined up to multiplication by a nonzero complex number.
Since ∆(1, 1) has cokernel map (1, 1, . . . , 1) (constant functions are discrete harmonic), the
normalization is fixed by the requirement that

tv(q1) = 1.

Therefore, the cokernel maps for both c and c′ are determined by S and given by δv 7→ ψv.
Taking transpose, the equation of ϕ∗i∗∆T becomes∑

vk∼u
c(uvk)(ψu(x)− ϕ(vku)

−1ψvk(x)) = 0,

from which we get that the ratio

c(uvk+1)

c(uvk)
= − lim

x→αk

ϕ(vku)
−1ψvk(x)

ϕ(vk+1u)−1ψvk+1
(x)

is determined by ψv, v ∈ V (G). On the other hand, if c′ = ρG,v0(C, S, ν), then we also have∑
vk∼u

c(uvk)(ψu(x)− ϕ(vku)
−1ψvk(x)) = 0,

so that
c′(uvk+1)

c′(uvk)
=
c(uvk+1)

c(uvk)
.

It follows that c′ = constant · c.
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Figure 10: Y-∆ transformation.

7 Y-∆ transformations and Fay’s quadrisecant identity

In this section, we will prove Theorem 7.1 which describes how the spectral transform and the Y-∆
transformation interact. The main observation is that the Y-∆ transformation is described by Fay’s
quadrisecant identity under the spectral transform.

A Y-∆ transformation s : G1 ⇝ G2 is induced by sliding a zig-zag path through the crossing
of two other zig-zag paths as shown in Figure 10. Therefore, discrete Abel and discrete Abel-Prym
maps dG1 , dG1

P on G1 induce discrete Abel and discrete Abel-Prym maps dG2 , dG2

P on G2. Explicitly,
suppose the vertices, faces and zig-zag paths are labeled as shown in Figure 10. By changing the
normalization, we assume that dG1(u) = 0. Then, we have

dG1(u) = 0,

dG1(u1) = dG2(u1) = (β − β) + (γ − γ),

dG1(u2) = dG2(u2) = (γ − γ) + (α− α),

dG1(u3) = dG2(u3) = (α− α) + (β − β),

dG2(f0) = (α− α) + (β − β) + (γ − γ),

dG1(f1) = dG2(f1) = α− α,

dG1(f2) = dG2(f2) = β − β,

dG1(f3) = dG2(f3) = γ − γ.

(31)

The only difference between the vertices and faces of G1 and G2 is that the vertex u in G1 disappears
and we get a new face f0 in G2. The discrete Abel maps of the vertices u1, u2, u3 and faces f1, f2, f3
which are present on both sides are equal. Therefore, we drop the superscripts in the rest of this
section and denote both dG1 and dG2 by d.

Theorem 7.1. Let G1 ⇝ G2 be a Y-∆ transformation with induced map µs : RG1
99K RG2

and
let v1 and v2 be vertices of G1 and G2 respectively. The following diagram commutes:

RN ⊃ RG1
RG2

⊂ RN

S ′
N S ′

N

µs

κG,v1
κG,v2

ξs

,

where the birational map ξs is defined as (C, S1, ν1) 7→ (C, S2, ν2), where
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1. There is a natural bijection between zig-zag paths on G2 and G1 induced by the Y-∆ transfor-
mation (see Figure 10). ν2 is obtained by composing this bijection with ν1.

2. S2 is the (generically unique by Theorem 6.2) degree g effective divisor in C0 such that

Ŝ2 + d(v2) ∼ Ŝ1 + d(v1). (32)

Moreover, the Y-∆ transformation becomes Fay’s quadrisecant identity under the spectral transform.

Proof. The Y-∆ transformation preserves the spectral curve [GK13, Section 5]. The local configu-

ration is shown in Figure 10. Let e = 1
2π1

(
I(Ŝ1)− 1

2I(q1)−
1
2I(q2)−

1
2I(KĈ)

)
+dP (v1). We show

that κ−1
G1,v1

= κ−1
G2,v2

◦ ξs. By changing the normalization of d, assume that d(u) = 0. From (26),
we get

a = κ−1
G1,v1

(C, S1, ν1)(uu1) =
η(dP (u)− e)η(dP (u1)− e)

η(dP (f2)− e)η(dP (f3)− e)

E(γ, β)

E(γ, β)

E(q1, β)

E(q1, β)
,

b = κ−1
G1,v1

(C, S1, ν1)(uu2) =
η(dP (u)− e)η(dP (u2)− e)

η(dP (f1)− e)η(dP (f3)− e)

E(α, γ)

E(α, γ)

E(q1, γ)

E(q1, γ)
,

c = κ−1
G1,v1

(C, S1, ν1)(uu3) =
η(dP (u)− e)η(dP (u3)− e)

η(dP (f1)− e)η(dP (f2)− e)

E(β, α)

E(β, α)

E(q1, α)

E(q1, α)
.

We have

1

2
π1

(
I(Ŝ2)−

1

2
I(q1)−

1

2
I(q2)−

1

2
I(KĈ)

)
+ dP (v2)

=
1

2
π1

(
I(Ŝ1 + d(v1)− d(v2))−

1

2
I(q1)−

1

2
I(q2)−

1

2
I(KĈ)

)
+ dP (v2) (using Theorem 6.1 and (32))

=
1

2
π1

(
I(Ŝ1)−

1

2
I(q1)−

1

2
I(q2)−

1

2
I(KĈ)

)
+ dP (v1)

(
using dP =

1

2
IP ◦ d =

1

2
π1 ◦ I ◦ d

)
= e.

Therefore, using (26), we get

A = (κ−1
G2,v2

◦ ξs)(C, S2, ν2)(u2u3) =
η(dP (u2)− e)η(dP (u3)− e)

η(dP (f0)− e)η(dP (f1)− e)

E(γ, β)

E(γ, β)

E(q1, β)

E(q1, β)
.

Letting t = dP (u)− e and x = q1 in the quadrisecant identity (Theorem 6.7), we get

η(dP (u)− IP (β)− IP (γ)− e)η(dP (u)− IP (α)− e)
E(q1, α)E(α, β)E(α, γ)

E(q1, α)E(α, β)E(α, γ)
+ cyclic rotations

= η(dP (u)− e)η(dP (u)− IP (α)− IP (β)− IP (γ)− e)
E(q1, α)E(q1, β)E(q1, γ)

E(q1, α)E(q1, β)E(q1, γ)
.

From (31), we have dP (u)−IP (β)−IP (γ) = dP (u1), dP (u)−IP (α) = dP (f1) etc. Multiplying both

sides by η(dP (u)−e)
η(dP (f1)−e)η(dP (f2)−e)η(dP (f3)−e)

E(α,β)E(β,γ)E(γ,α)

E(α,β)E(β,γ)E(γ,α)
, we get

a+b+c =
η(dP (u)− e)2η(dP (f0)− e)

η(dP (f1)− e)η(dP (f2)− e)η(dP (f3)− e)

E(α, β)E(β, γ)E(γ, α)

E(α, β)E(β, γ)E(γ, α)

E(q1, α)E(q1, β)E(q1, γ)

E(q1, α)E(q1, β)E(q1, γ)
.
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Plugging in these formulas into bc
a+b+c , we see that bc

a+b+c = A, which is the equation of the Y-∆
transformation (5).

8 Algebro-geometric integrability

The resistor network cluster variety RN has a large group of cluster automorphisms arising from the
Y-∆ transformation. Each such automorphism defines a discrete dynamical system on RN . In this
section, we prove Theorem 8.1 which states that these discrete dynamical systems are integrable in
the algebro-geometric sense.

Consider a sequence T of Y-∆ moves

T =
(
G = G0

s1⇝ G1
s2⇝ · · · sn−1

⇝ Gn−1
sn⇝ Gn = G

)
,

starting and ending with the same graph G. Let µT := µs1 ◦ µs2 ◦ · · · ◦ µsn : RG 99K RG be the
induced birational map of conductances. Since RG is Zariski-dense in RN , we consider µT as a
birational automorphism of RN . It is analogous to a cluster modular transformation as defined in
[FG09]. Similarly, let ξT := ξs1 ◦ ξs2 ◦ · · · ◦ ξxn , where ξs is as in Theorem 7.1. Let d = d0 denote
a discrete Abel map on G. As explained in Section 10, each Y-∆ transformation si : Gi−1 ⇝ Gi
induces a discrete Abel map di on Gi from di−1, so after the sequence T , we obtain a discrete Abel
map dT = dn on G such that for each v ∈ V , dT (v) − d(v) is a degree 0 divisor supported on the
points at infinity. Composing the diagrams in Theorem 7.1 for each si, we get:

Theorem 8.1. The following diagram commutes:

RN RN

S ′
N S ′

N

µT

κG,v κG,v

ξT

,

where the birational map ξT is given by (C, S, ν) 7→ (C, ST , νT ) where ST is the (generically) unique
degree g effective divisor satisfying

ST + dT (v) ∼ S + d(v),

and νT is obtained from ν by composing with the bijection between zig-zag paths induced by T .

For a fixed C, the fiber of the projection (C, S, ν) 7→ C over C is a finite cover of the space of

degree g effective divisors on C satisfying (9), which is birational to a finite cover of Prym(Ĉ, σ).
Therefore, along with Proposition 6.6, Theorem 8.1 tells us that the discrete integrable system
arising from T is linearized on a finite cover of Prym(Ĉ, σ).

9 Further questions

We end by listing some directions that we believe deserve further study.
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1. Liouville integrability: Goncharov and Kenyon [GK13] proved that the dimer cluster variety
is an algebraic integrable system, with its cluster Poisson structure. We expect the same to be
true for the resistor network cluster variety. Find a Poisson structure compatible with the Y-∆
transformation that makes the resistor network cluster variety an algebraic integrable system
and with respect to which the fibration by Prym varieties given by the spectral transform is
Lagrangian. More generally, the Y-∆ move belongs to the framework of Lam and Pylyavskyy’s
Laurent phenomenon algebras [LP16], for which we can ask the same question.

2. Massive Laplacian: Boutillier, de Tilière and Raschel [BdTR17] proved analogous results
for the massive Laplacian in the isoradial case, that is in the case where the spectral curve
has genus one. We expect that there is a common generalization of their results and this
paper to the massive Laplacian where the spectral curve has arbitrary genus. We speculate
that the massive Y-∆ move might be described by a generalization of the Beauville-Debarre
quadrisecant identity [BD87].

3. Relation to the dimer spectral transform: Let G be a minimal resistor network, ΓG be the
associated bipartite graph. Recall the dimer spectral data κΓG,v : XN → SN as defined
in [GK13, Proposition 7.2]. By [GK13, Theorem 1.4] or [Foc15], κΓG,v is birational. We
conjecture that the map t that makes the diagram below commute is (C, S, ν) 7→ (C, S +
(1, 1), ν).

RN S ′
N

XN SN

κG,v

t

κΓG,v

4. Connections to representation theory: Fock and Marshokov [FM16] showed that the dimer

integrable sytems coincide with integrable systems on the Poisson-Lie groups P̂GL. Is there
an analogous construction for resistor networks? We expect that such a construction will
relate to the electrical Lie group of Lam and Pylyavskyy [LP15].

5. The Ising model: The dimer cluster variety has another isotropic subvariety corresponding to
the Ising model, embedded by Dubédat’s bosonization construction [Dub11], which is known
to be related to the discrete CKP equation [AGPR20]. Define a spectral transform for the
Ising model, and prove its Liouville integrability

A Appendix

A.1 Divisors, line bundles and invertible sheaves

A.1.1 Sheaves of OC-modules

Let C be a Riemann surface. Let OC denote the sheaf of holomorphic/regular functions on C. For
U ⊂ C open,

OC(U) := {f : U → C holomorphic},
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with the restriction maps OC(U) → OC(V ), f 7→ f
∣∣
V

for V ⊆ U open. A sheaf F on C is called
a sheaf of OC-modules if for every U ⊂ C open, there is an action of OC(U) on F(U) that is
compatible with restriction: for V ⊂ U open, the diagram

OC(U)×F(U) F(U)

OC(V )×F(V ) F(V )

commutes. A sheaf of OC-modules F is called invertible if for every x ∈ C there exists an open
U ⊂ C such that F(U) ∼= OC(U) as sheaves of OC(U)-modules. An isomorphism F(U) ∼= OC(U)
is called a trivialization of F over U .

A.1.2 Line bundles

A line bundle L on C is a map π : L→ C such that

1. For each x ∈ C, the fiber π−1(x) is a one-dimensional C-vector space;

2. For every x ∈ C, there is an open neighbourhood U containing x and a homeomorphism
ϕ : U ×C → π−1(U) over U that is an isomorphism of C-vector spaces over every x ∈ U , and
such that the diagram

π−1(U) U × C

U
π
∣∣∣
π−1(U)

ϕ

pr1

commutes, where the map pr1 : U × C → U is projection to the first factor. The map ϕ is
called a trivialization of L over U .

If ϕ1 and ϕ2 are trivializations of L over U1 and U2, then they are related over U1 ∩ U2 by an
element g12 = ϕ1 ◦ ϕ−1

2 of GL1(C) = C×. If {Ui} is an open cover of C, then the functions gij are
called transition functions and they satisfy the cocycle condition

gij ◦ gjk = gik

over Ui ∩ Uj ∩ Uk. On the other hand, given a cover {Ui} and transition functions gij satisfying
the cocycle condition, the line bundle can be recoverd up to isomorphism by gluing together Ui×C
using gij .

Given two line bundles L1, L2 over C, let {Ui} be an open cover over which L1 and L2 are both
trivialized, and let gij , hij be their transition functions. The tensor product line bundle L1 ⊗ L2 is
obtained as follows: Over Ui, we have Ui × (C ⊗C C) ∼= Ui × C using the canonical isomorphism
C⊗C ∼= C, v⊗w 7→ v ·w. Under this isomorphism, the transition functions gij⊗hij become gij ·hij .

Line bundles modulo isomorphisms with tensor product form a group called the Picard group
of C, denoted by Pic(C).
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A.1.3 The invertible sheaf of a line bundle

A holomorphic/regular section of L over an open U ⊂ C is a function s : U → L such that π◦s = idU
that is s(x) is in the fiber of L over x for all x ∈ U . Let O{L}(U) := {s : U → L : π ◦ s = idU}
denote the set of holomorphic sections of L over U . Since each fiber π−1(x) is a C-vector space, we
have an action of OC(U):

OC(U)×O{L}(U) → O{L}(U)

(f, s) 7→ f · s,

which makes O{L} a sheaf of OC-modules. A trivialization ϕ : π−1(U) → U × C of L gives a
trivialization O{L}(U) ∼= OC(U), s 7→ f where f : U → C is the function pr2 ◦ ϕ ◦ s, where pr2 is
the projection U × C → C onto the second factor. Therefore, O{L} is an invertible sheaf.

The definition of the tensor product of invertible sheaves is more subtle and involves sheafifica-
tion, so we refer the reader to [Mir95, Lemma 1.9]. Invertible sheaves modulo isomorphism with
tensor product form a group which we denote Inv(C).

Proposition A.1. The construction L 7→ O{L} is an isomorphism of groups Pic(C) → Inv(C).

Let us briefly describe the inverse map. If F is an invertible sheaf, let {Ui} be an open cover
on which it is trivialized: there are isomorpisms ϕi : F(Ui) → OC(Ui). Then over Ui ∩Uj , we have

the isomorphism OC(Ui ∩ Uj)
ϕi◦ϕ−1

j−−−−−→ OC(Ui ∩ Uj). The functions gij = ϕi ◦ ϕ−1
j (1) are transition

functions for the line bundle.
A holomorphic/regular/global section of L is an element of O{L}(C). The C-vector space of

holomorphic sections of L is denoted by H0(C,O{L}). Let {Ui} be an open cover of C with
trivializations ϕi : π

−1(Ui) → Ui × C. Let fi = pr2 ◦ ϕi ◦ s
∣∣
Ui

∈ OC(Ui). If gij are the transition
functions, then fj = figij on Ui∩Uj . On the other hand, if we are given a collection of holomorphic
functions fi over Ui satisfying the fj = figij , we can glue them to get a global section of L.

A.1.4 Rational sections and divisors

Let L be a line bundle with transition functions gij with respect to an open cover {Ui}. A mero-
morphic/rational section t of a L over C is a collection (ti) of meromorphic functions ti : Ui → C
satisfying

tj = tigij on Ui ∩ Uj for every i, j.
The order of vanishing ordx(t) of t at x ∈ C is the order of vanishing of the rational function ti at
x. The divisor of t is

div t =
∑
x∈C

ordx(t).

Example A.2. If L = C×C is the trivial line bundle, then O{L} = OC is the sheaf of holomoprhic
functions, and a meromorphic section of L is a meromorphic function. The divisor of a meromorphic
function is called a principal divisor.

Two divisors D and E on C are said to be linearly equivalent, and written D ∼ E, if D − E
is a principal divisor. Divisors in C modulo principal divisors, with addition, form a group called
the divisor class group of C and denoted Cl(C). If s and t are two meromorphic sections of a line
bundle L, then div s ∼ div t [Mir95, Proposition 2.23]. Therefore, we have a map Pic(C) → Cl(C).

Proposition A.3. The map Pic(C) → Cl(C) is an isomorphism of groups.
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A.1.5 The invertible sheaf of a divisor

Propositions A.1 and A.3 tell us that the three groups Pic(C), Inv(C) and Cl(C) are isomorphic.
We now explain how the get an invertible sheaf directly from a divisor. Associated to a divisor D
on C is a sheaf

OC(D)(U) := {t ∈ K(C)× : div |U t+D|U ≥ 0} ∪ {0}, for all U ⊂ C open,

where K(C)× denotes the space of meromorphic functions on C. Let p be a point of D with
coefficient ap ∈ Z and let U be an open in C containing no other points of D. Let z be rational
function on C vanishing at p to order 1 at p and with no other zeros and poles in U . Then

OC(D)(U) → OC(U)

t 7→ t · zap

is a trivialization of OC(D) over U , and therefore, OC(D) is an invertible sheaf. Let us describe
how to recover the divisor from the invertible sheaf. Let D =

∑n
i=1 aipi be a divisor, OC(D) the

invertible sheaf and L the associated line bundle. Let {Ui} be an open cover of C such that each
Ui contains exactly point of D (we may need to add some points with ai = 0), and let zi the local
parameters as above, so that we have trivializations OC(D)(Ui) → OC(Ui), ti 7→ ti · zapi . Then a
meromorphic function t ∈ K(C)× gives a meromorphic section t̃ = (t · zapi ) of L. The divisor of
this meromorphic section is

div t̃ = div t+D.

In particular if t is the constant rational function 1, then div t̃ = D. The section t̃ is holomorphic
if div t+D ≥ 0.

A.1.6 The determinant line bundle

Suppose V =
⊕n

k=1 Lk is a vector bundle of rank n, where each Lk is a line bundle with transition
functions gkij , so that V has transition functions given by the diagonal n× n matrix

hij =


g1ij

g2ij
. . .

gnij

 .
The line bundle

∧n
V is called the determinant line bundle of V , and it has transition functions

dethij =
∏n
i=1 g

n
ij , which coincide with the transition functions of

⊗n
i=1 Li. Therefore, we have:

Proposition A.4.
∧n

V ∼=
⊗n

i=1 Li.
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[Mum07b] , Tata lectures on theta. II, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA,
2007. Jacobian theta functions and differential equations, With the collaboration of C. Musili, M. Nori,
E. Previato, M. Stillman and H. Umemura, Reprint of the 1984 original.
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