
SPECTRAL TRANSFORM FOR THE ISING MODEL

TERRENCE GEORGE

Abstract. We prove a correspondence between Ising models in a torus and the algebro-
geometric data of a Harnack curve with a certain symmetry and a point in the real part of
its Prym variety, extending the correspondence between dimer models and Harnack curves
and their Jacobians due to Kenyon and Okounkov.

1. Introduction

An Ising model in a torus T := R2/Z2 is a pair (G, J) where G = (V,E, F ) is a graph
embedded in T such that every face of G is a topological disk and J : E(G) → R>0 is a
function called the coupling constant. A dimer model in T is a pair (Γ, [wt]) where Γ =
(B ⊔W,E, F ) is a bipartite graph in T and [wt] is a function wt : E(Γ) → R>0 called edge
weight defined modulo a certain gauge equivalence.

Following [FW70, Dub11, BdT14], we can associate to an Ising model (G, J) a dimer
model (G□, [wt□]) as follows. We define two functions s, c : E → (0, 1) by

se := sech(2Je) and ce := tanh(2Je)

for every edge e ∈ E and replace e with the bipartite graph shown in Figure 1(b). For
example, the Ising model in Figure 1(a) gives rise to the dimer model in Figure 1(c).

There are two local moves on bipartite torus graphs (Figure 2). If we apply square moves

at all the square faces of G□ corresponding to edges of G, the resulting graph G□ is the same
as G□ but with all vertices having opposite colors. Let µ([wt]) denote the resulting weight

on G□. Let [wt] denote the weight on G□ where the weight of every edge is the same as that
of G□.
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Figure 1. (a) An Ising model (G, J) in a torus T, (b) the mapping from
(G, J) to (G□, [wt□]) and (c) the dimer model (G□, [wt□]).
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Figure 2. (a) The square move and (b) the contraction-uncontraction move.
Using gauge equivalence, we can assume that the original weight is as shown
on the right. Then the new weight is as shown on the left.

Our first result is the following characterization of the subset of dimer models that corre-
sponds to Ising models.

Theorem 1.1. A dimer model (G□, [wt]) arises from an Ising model if and only if [wt] =
µ([wt]).

One direction is easy. If wt□ is as in Figure 1(b) then a = c = se and b = d = ce in

Figure 2(a). Since ac + bd = s2e + c2e = 1, we get [wt□] = µ([wt□]). To prove the other
direction, we have to study the conditions imposed by setting [wt] = µ([wt]) on the gauge
invariant X coordinates on the set of dimer models. This is done in Section 5.

There is a bijection called the spectral transform between the following sets of data.

Data A. (a) (Γ, [wt]) a (minimal) dimer model in T.
(b) [κ] a Kasteleyn sign on Γ (equivalent to a choice of one of the four elements of

H1(T, {±1})).
Data B. (a) C ⊂ (C×)2 a spectral curve which is a real algebraic curve of a special type called

a Harnack curve.
(b) D a divisor on C with one point on each compact oval of C (i.e., connected

component of the real locus C(R)) called a standard divisor. Such divisors form
a component of the real part of the Jacobian variety Jac(C) of C. If C is singular,
we replace it with its desingularization (see Remark 3.3).

(c) An ordering of the points at toric infinity of C.

The spectral transform was first defined and shown to be a bijection when Γ is the hexagonal
lattice and [κ] is the standard Kasteleyn sign by Kenyon and Okounkov [KO06]. The defini-
tion for general (minimal) graphs was given in [GK13, Section 7.3]. For complex weights, it
was shown to be a birational map between Data A(a) and a complex version of Data B in
[Foc15] (see also [GGK23]). The general result for positive weights stated above was proved
in [BCdT23].

Our second result is the following proved in Section 6.

Theorem 1.2. For every (minimal) graph G in T, the spectral transform restricts to a
bijection between the following sets of data.

Data A. (a) (G, J) an Ising model in T.
(b) [κ] a Kasteleyn sign on G□.
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Data B. (a) C a Harnack curve that is invariant under the involution σ on (C×)2 defined
by (z, w) 7→ (z−1, w−1). Whenever a curve C carries an involution, it defines a
linear subvariety of Jac(C) called the Prym variety of C.

(b) D a standard divisor in the Prym variety of C (or its desingularization if C is
singular).

(c) An ordering of the points at toric infinity of C that is invariant under σ.

The correspondence in Theorem 1.2 is interesting for several reasons. Firstly, it generalizes
the Z-invariant Ising models of Baxter [Bax78, Bax86, Bax89], which correspond to genus-one
spectral curves, to arbitrary genus. These Ising models and their genus-zero degenerations
(critical or isoradial Ising models) have been extensively studied [CS11, BdT11, CS12, Cim12,
CDC13, Li14, BdTR19, Gal22].

Secondly, it completes the following table of correspondences between statistical-mechanical
models and algebro-geometric data.

disk torus
dimer models positive Grassmannian

[Pos06]
Harnack curves and

standard divisors [KO06]
electrical networks positive Lagrangian

Grassmannian [Lam18,
BGKT21, CGS21]

symmetric Harnack
curves with a node and
standard divisors in

Prym varieties [Geo24]
Ising models positive orthogonal

Grassmannian
[HWX14, GP20]

symmetric Harnack
curves and standard

divisors in Prym varieties
(this paper)

Thirdly, the spectral transform for the dimer model has been recently used in statistical
mechanics to understand limit shapes [BD23, BB23]. We expect that the spectral transform
for the Ising model will have similar applications in statistical mechanics.

Finally, combining results of Fock [Foc15] with compatibility of the Ising Y-∆ move with
the local moves on bipartite graphs [KP16], we get that the discrete dynamical systems on
Ising models arising from the Ising Y-∆ move are linearized on Prym varieties of spectral
curves; in this sense, Ising models in T give rise to integrable systems extending the cluster
integrable systems of [GK13] constructed from dimer models in T. The appearance of the
Prym variety here is parallel to its appearance in Hitchin’s integrable system for orthogonal
and symplectic groups [Hit87], the spectra of symmetric periodic difference operators in
[vMM79], the pentagram map for inscribed polygons [Izo16], etc.

We end the introduction with an open question. The local moves in dimer models and
electrical networks correspond to theta-function identities: Fay’s trisecant identity [Fay73,
Foc15] and Fay’s quadrisecant identity [Fay89, Geo24], respectively.

Question 1.3. Is there a theta-function identity describing the Ising Y-∆ move?

We expect that such an identity will be of degree 4 and resemble Cayley’s 2 × 2 × 2
hyperdeterminant.
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Figure 3. (a) Two of the zig-zag paths of the Ising model (G, J) in Fig-
ure 1(a) and (b) its Newton polygon.

2. Background on the Ising model

In this section, we collect some background on the Ising model. For further background, see
[Che18, CCK17]. Let G = (V,E, F ) be a graph in T and let IG(R>0) := {J : E(G)→ R>0}
be the set of Ising models with graph G.

2.1. Zig-zag paths and the Newton polygon. A zig-zag path in G is an oriented path
in G that alternately turns maximally left or right at each vertex. Zig-zag paths in G come
in pairs with opposite orientations; we denote by α the zig-zag path opposite to the zig-zag
path α. Let ZG denote the set of zig-zag paths in G.
Let π : R2 → T denote the universal cover of T. We say that G is minimal if the lift of

any zig-zag path to R2 does not have a self-intersection and the lifts of two zig-zag paths to
R2 share at most one edge. Hereafter, we assume that our graphs are minimal.

Choose a fundamental rectangle R for T and let γz, γw be loops in T along the sides of R
as shown in Figure 3(a). Then {[γz], [γw]} is a basis for H1(T,Z) identifying H1(T,Z) with
Z2. A nonzero vector v ∈ Z2 is called primitive if v is not a multiple of another vector in Z2,
i.e., if v = λw for w ∈ Z2 and λ ∈ Z>0 then v = w and λ = 1. A convex polygon N ⊂ R2

is said to be integral if all of its vertices are contained in Z2. Let σ denote the involution
v 7→ −v of R2. A convex integral polygon N is called centrally symmetric if N is invariant
under σ.

Associated to a minimal G is a centrally-symmetric convex integral polygon NG ⊂ R2 as
follows: each zig-zag path α ∈ ZG defines a primitive vector given by the homology class
[α] ∈ H1(T,Z) ∼= Z2. There is a unique (modulo translation) convex integral polygon in R2

whose counterclockwise-oriented boundary consists of the vectors {[α] ∈ Z2 : α ∈ ZG}. The
translation is fixed by centering at (0, 0).

Example 2.1. Let (G, J) denote the Ising model in Figure 1(a). There are four zig-zag
paths in G. Let α (resp., β) denote the red (resp., blue) zig-zag path in Figure 3(a). The
other two zig-zag paths are α and β. The homology classes are

[α] = (1, 1), [β] = (−1, 1), [α] = (−1,−1), [β] = (1,−1),

so the Newton polygon is the convex integral polygon shown in Figure 3(b).
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Figure 4. The Ising Y-∆ move.

2.2. Kramers–Wannier duality. Let (G, J) be an Ising model in T. Let G∗ denote the
dual graph of G in T. For e ∈ E(G), let e∗ ∈ E(G∗) denote the dual edge. Define J∗ :
E(G∗)→ R>0 by the condition

sinh(2J∗
e∗) =

1

sinh(2Je)
.

Then (G∗, J∗) is called the dual Ising model. Duality defines a bijection

IG(R>0)→ IG∗(R>0).

It is convenient to introduce the following coordinates. Let x : E(G)→ R>0 be defined as
xe := exp(2Je). Then x∗

e∗ := exp(2J∗
e∗) is given by the unique positive solution to

xe + x∗
e∗ + xex

∗
e∗ = 1.

2.3. Y-∆ move. Ising models have a local transformation called the Y-∆ or star-triangle
move which replaces a portion of a graph G that looks like one side of Figure 4 with a portion
that looks like the other side to get a graph G′ and modifies the x weights by

A =

√
(abc+ 1)(a+ bc)

(b+ ac)(c+ ab)
, B =

√
(abc+ 1)(b+ ac)

(a+ bc)(c+ ab)
, C =

√
(abc+ 1)(c+ ab)

(a+ bc)(b+ ac)
.

The Y-∆ move gives rise to a bijection IG(R>0)→ IG′(R>0). Moreover, the Y-∆ move and
duality are compatible, i.e., the following diagram commutes

IG(R>0) IG′(R>0)

IG∗(R>0) I(G′)∗(R>0)

Y-∆ move

duality duality

Y-∆ move

.

We say that two graphs G and G′ are move-equivalent if they are related a sequence of
Y-∆ moves and duality.

Theorem 2.2 ([GK13, Theorem 5.4]). For every centrally symmetric convex integral polygon
N , there is a family of minimal graphs with Newton polygon N . Any two members of a family
are move equivalent. In other words, the set of move equivalence classes of minimal graphs
is in bijection with the set of centrally symmetric convex integral polygons.

Remark 2.3. Although [GK13, Theorem 5.4] is stated for electrical networks, the under-
lying graphs, moves, and definition of minimality are identical to Ising models if we forget
conductances and coupling constants.
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3. Background on the dimer model

In this section, we give a brief background on the dimer model and its spectral transform,
mostly following [Ken09, GK13].

3.1. Dimer models in T. A dimer model in T is a pair (Γ, [wt]) where

(1) Γ = (B ⊔W,E, F ) is a bipartite graph embedded in T such that the faces of Γ are
topological disks,

(2) [wt] is the gauge-equivalence class of wt : E → C× which is a function assigning to
each edge its edge weight, and two edge weights wt1 and wt2 are gauge equivalent if
there is a function f : B ⊔W → C× such that for every edge e = {b,w} ∈ E (where
b ∈ B,w ∈ W ),

wt′(e) = f(b)−1wt(e)f(w).

Let XΓ denote the space of edge weights modulo gauge equivalence. It will be convenient
to rephrase the above in the language of algebraic topology. In particular, doing so will help
us identify coordinates on XΓ that are invariant under gauge equivalence.
We consider Γ as a cell complex where the vertices are the 0-cells and the edges are the

1-cells, where we orient each edge e = {b,w} from b to w. The cellular chain complex is

0→ C1(Γ,Z)
∂−→ C0(Γ,Z)→ 0,

where C0(Γ,Z) = ZB ⊕ ZW , C1(Γ,Z) = ZE and ∂e = w − b. Therefore,

H1(Γ,Z) = ker(C1(Γ,Z)
∂−→ C0(Γ,Z)),

so 1-homology classes in Γ are the same thing as 1-cycles in Γ.
The cellular cochain complex is

1→ C0(Γ,C×)
d−→ C1(Γ,C×)→ 1,

where

(1) C0(Γ,C×) = HomZ(C0(Γ,Z),C×) ∼= {f : B ⊔W → C×},
(2) C1(Γ,C×) = HomZ(C1(Γ,Z),C×) ∼= {wt : E → C×},
(3) (df)(e) = f(b)−1f(w),

where HomZ(·,C×) denotes the space of abelian group homomorphisms from · to C×. There-
fore, a 1-cocycle is the same thing as an edge weight and two 1-cocycles differ by a 1-
coboundary if they are gauge equivalent, so

XΓ = H1(Γ,C×).

With this identification, we can describe coordinates on XΓ. We describe this abstractly first
and then explain what it means concretely.

Since H1(Γ,C×) = HomZ(H1(Γ,Z),C×) is the algebraic torus with lattice of characters
H1(Γ,Z), its coordinate ring is the group algebra

C[H1(Γ,Z)] =

 ∑
γ∈H1(Γ,Z)

aγXγ : aγ ∈ C and aγ = 0 for all but finitely many γ
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v
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Figure 5. The local pairing at a trivalent vertex v (which may be black or
white) is defined by ϵv(γ, δ) =

1
2
and bilinearity and antisymmetry.

with multiplication given by Xγ1 · Xγ2 = Xγ1+γ2 , where Xγ : XΓ → C× is the character
given by Xγ([wt]) = [wt](γ), i.e., by evaluating the cohomology class [wt] on the cycle γ.

Explicitly, if γ is the cycle b1
e1−→ w1

e2−→ b2
e3−→ w2

e4−→ · · · e2n−2−−−→ bn
e2n−1−−−→ wn

e2n−−→ b1 , then

[wt](γ) =
wt(e1) · · ·wt(e2n−1)

wt(e2) · · ·wt(e2n)
.

In down to earth terms, this means that the Xγ’s are a set coordinates on XΓ but they are
not independent and have to satisfy some relations. If we choose a basis for H1(Γ,Z), then
we obtain a basis for the set of coordinates. There is no canonical choice for a basis but
the following choice is convenient for computations. We identify faces of Γ with the cycles
given by their counterclockwise-oriented boundaries. Then each face f determines a regular
function Xf on XΓ. Since

∑
f∈F f = 0 in H1(Γ,Z), we have

∏
f∈F Xf = 1. Additionally if

we choose two cycles a, b in Γ generating H1(T,Z), then {all faces except one, a, b} is a basis
for H1(Γ,Z) and so

(3.1) {Xf}all faces f except one ⊔ {Xa, Xb}

is a basis for the coordinate ring.
Let XΓ(R>0) denote the positive real valued points of XΓ, i.e., the set of points [wt] where

Xγ([wt]) ∈ R>0 for all γ ∈ H1(Γ,Z).

3.2. Zig-zag paths. A zig-zag path in Γ is a cycle that turns maximally right at black
vertices and maximally left at white vertices. We denote the set of zig-zag paths of Γ by ZΓ.
The unique (modulo translation) convex integral polygon NΓ ⊂ R2 whose counterclockwise-
oriented boundary consists of {[α] ∈ H1(T,Z) ∼= Z2 : α ∈ ZΓ} is called the Newton polygon
of Γ. For a side S of N , let ZΓ,S denote the subset of zig-zag paths whose homology classes
form the side S.
Recall that π : R2 → T is the universal cover. We say that Γ is minimal if there are no

zig-zag paths with zero homology, no lift of a zig-zag path has a self-intersection, and lifts of
two zig-zag paths do not form parallel bigons, i.e., they do no pass through two edges e1 ̸= e2
of the biperiodic graph π−1(Γ) ⊂ R2 with both lifts oriented from e1 to e2. Hereafter we
assume that all our bipartite torus graphs are minimal.

3.3. Moves. There are two local moves on bipartite torus graphs shown in Figure 2. Each
move Γ

s
⇝ Γ′ induces a pair of maps:

(1) An isomorphism s∗ : H1(Γ,Z) → H1(Γ
′,Z) such that s∗ restricts to a bijection

between ZΓ and ZΓ′ and such that [s∗(γ)] = [γ] ∈ H1(T,Z),
(2) A bijection µs : XΓ(R>0)→ XΓ′(R>0).
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Figure 6. (a) Labeling of the graph near a square face f and (b)–(e) the
correspondence s∗ between cycles in Γ and Γ′.

We discuss the case of the square move at a face f in more detail (see [GK13, GLSBS22]).
Let Γf and Γ′

f denote the portions of the graphs shown in Figure 6. Suppose the ver-
tices and faces near f are labeled as in Figure 6 (left). We identify faces with the cycles
given by their counterclockwise-oriented boundaries as in Section 3.1. Let M denote the set
{w1,w2,w3,w4}. Then each cycle in Γ (resp., Γ′) restricts to a relative cycle in H1(Γf ,M,Z)
(resp., H1(Γ

′
f ,M,Z)) and f1, f2, f3, f4 (resp., f ′

1, f
′
2, f

′
3, f

′
4) is a basis for H1(Γf ,M,Z) (resp.,

H1(Γ
′
f ,M,Z)). Note that f = −f1 − f2 − f3 − f4 and similarly for f ′.

In these bases, s∗ is given by the formula

(3.2) s∗(fi) = f ′
i +max(0, ⟨fi, f⟩)f ′,

where ⟨·, ·⟩ : H1(Γ,Z)×H1(Γ,Z) is an antisymmetric bilinear form on cycles defined by the
intersection pairing on the conjugate surface (see [GK13, Section 1.1.1]). It can be computed
by

⟨γ, δ⟩ =
∑
b∈B

ϵb(γ, δ)−
∑
w∈W

ϵw(γ, δ),

where ϵv(γ, δ) is the local pairing shown in Figure 5. Since all the vertices in G□ are trivalent,
we do not give the general rule (see [GK13, Appendix]).

For example, we have

⟨f1, f⟩ = ϵb1(f1, f)− ϵw4(f1, f) =
1

2
−
(
−1

2

)
= 1,

so s∗(f1) = f ′
1 + f ′. The cycles s∗(fi), i ∈ {1, 2, 3, 4}, are shown in Figure 6(b)–(e). Note

that

s∗(f) = s∗(−f1 − f2 − f3 − f4) = −(f ′
1 + f ′)− f ′

2 − (f ′
3 + f ′)− f ′

4 = −f ′.

The bijection µs : XΓ(R>0)→ XΓ′(R>0) is given by

(3.3) Xs∗(γ)(µs([wt])) = Xγ([wt])(1 +Xf ([wt]))
−⟨γ,f⟩,
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(a) (b)

Figure 7. (a) Two of the zig-zag paths of the graph G□ from Figure 1(b)
and (b) its Newton polygon.

or more succinctly, µ∗
sXs∗(γ) = Xγ(1 + Xf )

−⟨γ,f⟩, which is the formula for mutation of X
cluster variables. For example,

µ∗
sXf ′ = µ∗

sXs∗(−f) = X−f (1 +Xf )
−⟨−f,f⟩ = X−1

f ,

and

µ∗
sXf ′

1
= µ∗

sXs∗(f1+f) = Xf1+f (1 +Xf )
−1 = Xf1(1 +X−1

f )−1.

3.4. The mapping from Ising models to dimer models. Recall the mapping from
Ising models to dimer models from Figure 1(b). There is a natural bijection between ZG

and ZG□ that preserves homology classes (compare Figure 3(a) and Figure 7(a)). Therefore,
NG□ = NG.

A Y-∆ move G1 → G2 can be realized as a sequence of moves G□1 → G□2 [KP16, Figure 6]
(see also [AGPR24, Section 4.3]), i.e., we have a commuting diagram

IG1(R>0) IG2(R>0)

XG□
1
(R>0) XG□

2
(R>0)

Y-∆ move

moves

,

and the dual Ising model gives the dimer model (G□, [wt□]). Therefore, the mapping is
compatible with respect to moves on both models.

3.5. The spectral transform. Let (Γ, [wt]) be a dimer model in T. Recall from Section 2.1
that γz, γw are loops in T generating H1(T,Z). We assign to each edge e = {b,w} of Γ a
monomial ϕ(e) := ziwj where i (resp., j) records the number of signed intersections of e with
γw (resp., γz) when we orient e from b to w.

A Kasteleyn sign on Γ is a 1-cohomology class [κ] ∈ H1(Γ, {±1}) such that for any face
f ∈ F ,

[κ](f) = (−1)
#∂f
2

+1,

where e ∈ f means e is incident to f . Here {±1} is the multiplicative group of square roots
of unity. There are four choices of [κ] corresponding to the four elements of H1(T, {±1}). If
we use the basis (3.1), a choice of [κ] is equivalent to a choice of (Xa, Xb) ∈ {±1}2.
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Let wt be a 1-cocycle representing the cohomology class [wt] and let κ : E → {±1} be a
1-cocycle representing [κ]. The Kasteleyn matrix K(Γ,wt,κ)(z, w) is the Laurent-polynomial-
valued matrix with rows and columns indexed by white and black vertices respectively defined
by

K(Γ,wt,κ)(z, w)wb :=
∑

e={b,w}

wt(e)κ(e)ϕ(e),

where the sum is over all edges with endpoints b and w. The determinant

P(Γ,wt,κ)(z, w) := detK(Γ,wt,κ)(z, w)

is a Laurent polynomial called the characteristic polynomial. TheNewton polygon of P(Γ,wt,κ)(z, w)
is defined as

convex-hull{(i, j) ∈ R2 : coefficient of ziwj is nonzero in P(Γ,wt,κ)(z, w)}.
For minimal Γ, the Newton polygon of P(Γ,wt,κ)(z, w) coincides with the Newton polygon of
Γ, whence the name. The vanishing locus C◦ := {(z, w) ∈ (C×)2 : P(Γ,wt,κ)(z, w) = 0} is
called the open spectral curve.

The amoeba A(C◦) is defined to be the image of C◦ under the map Log : (C×)2 → R2

defined by (z, w) 7→ (log |z|, log |w|). A curve C◦ defined by a real Laurent polynomial
P (z, w) is said to be a Harnack curve if the restriction

Log : C◦ → A(C◦)

is 2 : 1 over the interior of A(C◦). For Harnack curves, the boundary of A(C◦) is the image
of and in bijection with the real points C◦(R).

Theorem 3.1 ([KS04, KOS06]). The open spectral curve C◦ of a dimer model is a Harnack
curve.

The Newton polygon N defines a compactification N of (C×)2 called a toric surface. The
boundary

N − (C×)2 =
⋃

S side of N

DS

where each DS
∼= CP1 is called a line at infinity. Taking closure, we get a compactification

C := C◦ ⊂ N
called the spectral curve. The points C − C◦ are called points at infinity ; we call the points
in C ∩DS the points at infinity corresponding to the side S. The number of such points is
equal to the number of primitive vectors in S.
Points at infinity corresponding to the side S are in bijection with tentacles of the amoeba

in the direction of the outward-pointing normal to S. Each tentacle is asymptotic to a line
ix+ jy+ c = 0 where (i, j) is the primitive vector along the side S of N . There is a bijection

νΓ : ZΓ →
⊔

S side of N

C ∩DS

which can be described as follows: The tentacle corresponding to a zig-zag path α with [α]
along S is the one asymptotic to the line

(3.4) ix+ jy + log |Xα([wt])| = 0.

Recall that ZΓ,S is the subset of zig-zag paths corresponding to S. Note that by definition,
this bijection has the property that νΓ(ZΓ,S) = C ∩DS.
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The arithmetic genus g of C and is equal to the number of interior points in N ∩Z2. The
real locus of a Harnack curve has g + 1 components called ovals, one of which corresponds
to the boundary of N and is called the outer oval, and g interior ovals that are canonically
in bijection with the interior lattice points in N .

By definition of the spectral curve, the Kasteleyn matrix K(Γ,wt,κ)(z, w) has nonzero kernel
and cokernel over C◦. If (z, w) is a smooth point of C◦ then the kernel and cokernel of
K(Γ,wt,κ)(z, w) are 1-dimensional. Hence, if C◦ is smooth then the kernel and cokernel are
line bundles.

For a white vertex w, the image of the function δw ∈ CW in cokerK(Γ,wt,κ)(z, w) defines a
section of the cokernel. This section vanishes on a set of g points {(pi, qi)}gi=1 in C◦. We call

(3.5) Dw :=

g∑
i=1

(pi, qi)

the divisor of w. By the same construction applied to K(Γ,wt,κ)(z, w)
T , we define degree-g

divisors Db for black vertices b ∈ B. These divisors can be described more explicitly as
follows. Let Q(Γ,wt,κ)(z, w) denote the cofactor matrix of K(Γ,wt,κ)(z, w). The divisor Db

(resp., Dw) is given by the vanishing of the b-row (resp., w-column) of Q(Γ,wt,κ)(z, w).
A degree-g divisor D is called a standard divisor if D contains one point in each interior

oval. If C is smooth, the set of standard divisors is a component of the real locus of the
Jacobian of C and is a g-dimensional real torus.

Theorem 3.2 ([KO06, BCdT23]). Let (Γ, [wt]) be a dimer model in T and let v be a vertex
of Γ. Then the divisor Dv is a standard divisor.

Remark 3.3. The only possible singularities of Harnack curves occur when some ovals
shrink to zero size forming isolated real nodes or when tentacles in the same direction merge
[MRr01]. Suppose C is singular with b nodes. Let C̃ denote its desingularization which has
genus g̃ = g − b. If π : C̃ → C is the canonical map gluing pairs of points into nodes,
then π−1(Dv) has g + b points: each smooth point lifts to one point and each node to two
points. Let D̃v denote the g̃ points of π−1(Dv) corresponding to the smooth points. All the
constructions work for singular C as for smooth C if we replace C with C̃ and Dv with D̃v,
and we do this without further mention below.

Example 3.4. Let (G□, [wt□]) be the dimer model from Figure 1(c). Consider the Kasteleyn
sign κ and ϕ shown in Figure 8. The Kasteleyn matrix is (with vertices ordered from left to
right)

K(G□,wt□,κ)(z, w) =


c2 s2 0 z

w
s2 −c2 1 0
0 w −s1 c1
1
z

0 c1 s1

 ,

and the characteristic polynomial is

P(G□,wt□,κ)(z, w) = 1 + c21c
2
2 + c22s

2
1 + c21s

2
2 + s21s

2
2 − c2s1w − c1s2z −

c2s1
w
− c1s2

z
.
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Figure 8. (a) A Kasteleyn sign and ϕ for the dimer model in Figure 1(b)
and (b) the real locus of the amoeba of C and the (image of the) standard

divisor Dw for c1 =
1√
2
and c2 =

√
3
2
.

The adjugate matrix Q(G□,wt□,κ)(z, w) is
c21c2 + c2s

2
1 − s1w c21s2 − c1z + s21s2 s1s2 − c1c2z

w
−c1s2 − c2s1z

w
+ z

c21s2 − c1
z
+ s21s2 −c21c2 − c2s

2
1 +

s1
w
− c1s2z

w
− c2s1 +

1
w

c1c2 − s1s2z
w

s1s2w − c1c2
z

− c1s2
z
− c2s1w + 1 −c22s1 + c2

w
− s1s

2
2 c1c

2
2 + c1s

2
2 − s2z

−c1s2w − c2s1
z

+ w
z

c1c2w − s1s2
z

c1c
2
2 + c1s

2
2 − s2

z
c22s1 − c2w + s1s

2
2

 .

Setting the w-column and b-row respectively equal to 0 (with w and b as shown in Figure 8),
we get

Dw =

(
c1

s2(c21 + s21)
,

s1
c2(c21 + s21)

)
and Db =

(
s2

c1(c22 + s22)
,

c2
s1(c22 + s22)

)
.

Since the real locus of the spectral curve corresponds bijectively to the real locus of the
amoeba, we can illustrate the spectral curve and standard divisor as shown in Figure 8(b).

Note that P(G□,wt□,κ)(z, w) is invariant under the involution σ : (z, w) 7→ (z−1, w−1). Using

c21 + s21 = c22 + s22 = 1, we also see that Db = σ(Dw). Both of these properties are true for all
spectral curves and standard divisors that arise from the Ising model and characterize them
as we will prove in Theorem 6.1.

A spectral data associated to Γ is a triple (C,D, νΓ) where

(1) C is a Harnack curve with Newton polygon NΓ,
(2) D is a standard divisor on C,
(3) νΓ : ZΓ →

⊔
S side of N C ∩ DS is a bijection between zig-zag paths and points at

infinity such that for every side S of NΓ, νΓ(ZΓ,S) = C ∩DS.

Let SΓ denote the set of spectral data associated to Γ.
The spectral transform is the map

λ(Γ,v) : XΓ(R>0)×H1(T, {±1})→ SΓ
sending ([wt], [κ]) to the spectral data (C,Dv, νΓ) where

(1) C is the spectral curve,
(2) Dv is the divisor as in (3.5),
(3) νΓ is the bijection in (3.4).
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Figure 9. Transformation of κ under moves.

Although the Kasteleyn matrix depends on the choice of cochains wt and κ representing [wt]
and [κ], the spectral data only depends on the cohomology classes [wt] and [κ].

Theorem 3.5 ([KO06], see also [Foc15, BdTR19]). The spectral transform is a bijection.

Explicit inverse spectral transform constructions appear in [Foc15] and [GGK23].

Remark 3.6. [KO06](3.7) does not include the Kasteleyn sign as part of the domain of the
spectral transform. However, then we only get one of the four connected components of the
space of Harnack curves. In [GK13], the spectral transform is defined for complex weights
by fixing a choice of Kasteleyn sign. However, when the spectral curve is Harnack and the
divisor is standard, the weights obtained by inverting the spectral transform are positive for
only one of the four possible Kasteleyn sign choices. This is why we chose to include the
Kasteleyn sign in the domain.

Suppose Γ
s
⇝ Γ′ is a move. By a gauge transformation, we can assume that wt and κ are

as shown on one side of Figure 9. Then µs([κ]) is as shown on the other side.
Finally, we need a construction of Fock [Foc15] called the discrete Abel map. Recall that

π : R2 → T is the universal cover. Let Γ̃ := π−1(Γ) denote the bi-periodic graph in the plane
associated to Γ. The discrete Abel map dΓ̃ associates to each vertex of Γ̃ a divisor at infinity
of C and is defined as follows:

(1) Let dΓ̃(w) = 0 where w is a fixed white vertex (this is a normalization).
(2) For any edge {b,w} contained in the fundamental rectangle with zig-zag paths α, β

passing through it,

dΓ̃(b)− dΓ̃(w) = νΓ(α) + νΓ(β).

Then dΓ̃(v+(i, j)) = dΓ̃(v)+div ziwj so dΓ̃ is not well-defined on Γ (different lifts of a vertex
have different values). However, since ziwj is a rational function, the linear equivalence class
of dΓ̃(v) is well-defined for every vertex v of Γ independent of the choice of lift of v to Γ̃; we
denote this linear equivalence class by dΓ(v).

A move Γ
s
⇝ Γ′ induces a discrete Abel map dΓ′ as follows: There is a unique way to

define dΓ′ on Γ′ so that dΓ′(v) = dΓ(v) for vertices v that are in both Γ and Γ′; essentially
we want the two discrete Abel maps to be consistently normalized.

The following theorem summarizes how the spectral data changes upon doing moves and
changing the vertex v.
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Theorem 3.7. Suppose Γ
s
⇝ Γ′ is a sequence of moves. Then the following diagram com-

mutes

XΓ(R>0)×H1(T, {±1}) XΓ′(R>0)×H1(T, {±1})

SΓ SΓ′

µs

λ(Γ,v) λ(Γ′,v′)
,

where the map SΓ → SΓ′ is given by (C,Dv, νΓ) 7→ (C,Dv′ , νΓ′) where

(1) Dv′ is the unique degree g effective divisor satisfying (where ∼ denotes linear equiv-
alence of divisors)
(a) Dv + dΓ(v) ∼ Dv′ + dΓ′(v′) if v and v′ have the same color.
(b) Dv +Dv′ ∼ KC + dΓ(v)− dΓ′(v′) if v is black and v′ is white, where KC is the

canonical divisor of C.
(2) νΓ′(s∗(α)) := νΓ(α).

Theorem 3.7(1)(a) is due to Fock [Foc15] and Theorem 3.7(1)(b) is well known; see for
example [GGK23, Corollary 6.2] or [BCdT23, Lemma 32].

4. Color change

Bipartite torus graphs have a global transformation which will play an important role in
this paper. Let (Γ, [wt]) be the weighted bipartite graph obtained from (Γ, [wt]) by changing
the colors of all the vertices and keeping the weights of all edges the same. For a vertex v in
Γ let v denote the corresponding oppositely colored vertex in Γ. So if wt is an edge weight
representing [wt] and e = {b,w} is an edge of Γ, then

wt({w, b}) = wt({b,w})

is an edge weight representing [wt].
For a cycle γ in Γ, let γ denote the corresponding cycle in Γ. Then α 7→ −α is a bijection

between ZΓ and ZΓ so NΓ = −NΓ.
If κ is a Kasteleyn sign on Γ, then κ is a Kasteleyn sign on Γ. The Kasteleyn matrices of

Γ and Γ are related by

(4.1) K(Γ,wt,κ)(z, w)bw = K(Γ,wt,κ)(z
−1, w−1)Twb,

so we get

P(Γ,wt,κ)(z, w) = P(Γ,wt,κ)(z
−1, w−1).

Let σ : (C×)2 → (C×)2 denote the involution (z, w) 7→ (z−1, w−1). Recall that Q(Γ,wt,κ)(z, w)
denotes the cofactor matrix of K(Γ,wt,κ)(z, w) and that for a vertex v of Γ, the divisor Dv is
defined by the vanishing of the row or column of Q(Γ,wt,κ)(z, w) corresponding to v. From
(4.1), we get

Q(Γ,wt,κ)(z, w)wb = Q(Γ,wt,κ)(z
−1, w−1)Tbw,

which implies that Dv = σ(Dv).
Since Xα([wt]) = Xα([wt])

−1, multiplying (3.4) by −1 we get

(4.2) νΓ(α) = σ(νΓ(α)).

We have shown:
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Proposition 4.1. The following diagram commutes:

XΓ(R>0)×H1(T, {±1}) XΓ(R>0)×H1(T, {±1})

SΓ SΓ

λ(Γ,v) λ(Γ,v)

where the top map is ([wt], [κ]) 7→ ([wt], [κ]) and the bottom map is (C,D, νΓ) 7→ (σ(C), σ(D), νΓ)
with νΓ defined as in (4.2).

5. A characterization of IG(R>0) ⊂ XG□(R>0)

If we apply square moves at all the square faces of G□, then the resulting graph is G□.
Let s∗ : H1(G

□,Z) → H1(G□,Z) denote the induced map of cycles and µ : XG□(R>0) →
X

G□(R>0) be induced map of weights. Therefore, starting with (G□, [wt]), there are two

ways to get weights on G□: [wt] and µ([wt]). The main result of this section is:

Theorem 5.1. The subset IG(R>0) ⊂ XG□(R>0) is the set of weights such that µ([wt]) =
[wt].

The proof of Theorem 5.1 relies on the following lemma.

Lemma 5.2. Suppose [wt] ∈ XG□(R>0) is such that µ([wt]) = [wt]. Then [wt] is determined
by (Xf ([wt]))square faces f .

Proof. Let γ be a cycle in G□. Then we have Xγ([wt]) = Xγ([wt])
−1. On the other hand, by

(3.2), we have

(5.1) γ = s∗(γ) +
∑

square faces f

afs∗(f),

for some af ∈ Z. Using (3.3), we get

Xγ(µ([wt])) = Xγ([wt])
∏

square faces f

Xf ([wt])
af (1 +Xf ([wt]))

−⟨γ,f⟩.

Since µ([wt]) = [wt], we have

(5.2) Xγ([wt])
2 =

∏
square faces f

Xf ([wt])
−af (1 +Xf ([wt]))

⟨γ,f⟩.

Therefore, everyX2
γ is a function of (Xf )square faces f . For positive weights, there is a natural

square root, so Xγ is determined by (Xf )square faces f . □

Example 5.3. Consider the basis {f1, f2, f3, a, b} forH1(G
□,Z) shown in Figure 10(a). Then

the equations (5.1) are (see Figure 10(b))

f1 = s∗(f1)− 2s∗(f1), f2 = s∗(f2)− 2s∗(f2),

f3 = s∗(f3) + 2s∗(f1) + 2s∗(f2), a = s∗(a) + s∗(f2),

b = s∗(b)− s∗(f1),
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Figure 10. (a) A basis for H1(G
□,Z) and (b) the cycles corresponding to

a and b in G□. From (b), we see that a = s∗(a) − f2 = s∗(a) + s∗(f2) and
similarly the equation for b.

and the equations (5.2) are

X2
f1

= X2
f1
, X2

f2
= X2

f2
,

X2
f3

= X−2
f1

X−2
f2

(1 +Xf1)
2(1 +Xf2)

2, X2
a = Xf2(1 +Xf1)

−1(1 +Xf2)
−1,

X2
b = X−1

f1
(1 +Xf1)(1 +Xf2).(5.3)

Theorem 5.1 says that the subset IG(R>0) ⊂ XG□(R>0) is defined by these five equations
(two of which are trivial). Using the weights in Figure 1(c), we compute

Xf1 =
s21
c21
, Xf2 =

s22
c22
, Xf3 =

1

s21s
2
2

, Xa = c1s2, Xb =
1

c2s1
.

Plugging into (5.3), we see that all the equations are satisfied.

Proof of Theorem 5.1. Let [wt] be a weight such that µ([wt]) = [wt]. For an edge e ∈ E(G),
let f denote the corresponding square in G□. Consider the Ising weight wt□ on G□ with

se :=
√

Xf

1+Xf
and ce :=

√
1

1+Xf
. Then [wt□] also satisfies

µ([wt□]) = [wt□].

Since Xf ([wt
□]) = Xf ([wt]) for all square faces f , [wt□] = [wt] by Lemma 5.2.

□

6. Ising spectral data

The goal of this section is to describe the subset of spectral data that corresponds to Ising
models, i.e., the image of

IG(R>0) ↪→ XG□(R>0)→ SG□ .

Theorem 6.1. Let G be a minimal graph in T, G□ the corresponding bipartite graph, w
a white vertex of G□ and [κ] a Kasteleyn sign on G□. Suppose b denotes the black vertex
incident to w that is not a part of the square containing w and let α, α denote the zig-zag paths
that contain the edge {b,w}. Let [wt] ∈ XG□(R>0) and let (C,Dw, νG□) = λ(G□,w)([wt], [κ]).
Then [wt] ∈ IG(R>0) if and only if



SPECTRAL TRANSFORM FOR THE ISING MODEL 17

(1) C is invariant under the involution σ : (z, w)→ (z−1, w−1).
(2) Dw satisfies

Dw + σ(Dw) ∼ KC + νG□(α) + νG□(α).

Such divisors are in the Prym variety of C (see e.g., [vMM79, Section 3]). If C is
singular, we replace it with its desingularization C̃ as in Remark 3.3.

(3) For every zig-zag path α of G□ we have

νG□(α) = σ(νG□(α)).

Proof. Since dG□(b) − dG□(w) = νG□(α) + νG□(α), by Theorem 3.7(1)(b) the condition (2)
is equivalent to

(2′) Dw = σ(Db).

Now we have

[wt] ∈ IG(R>0)

⇐⇒ [wt] = µ([wt]) (Theorem 5.1)

⇐⇒ λ(Γ,b)([wt], [κ]) = λ(Γ,b)(µ([wt]), µ([κ])) (Theorem 3.5 and µ([κ]) = [κ] (Figure 9))

⇐⇒ (σ(C), σ(Db), σ(νG□(·))) = (C,Dw, νG□(·)) (Proposition 4.1 and Theorem 3.7)

⇐⇒ (1), (2′) and (3).

□

Remark 6.2. For generic complex Ising edge weights (where edge weights are as defined
in Section 2.2), the same argument as in Theorem 6.1 shows that the spectral transform
(C,Dw, νG□) satisfies the conditions (1), (2) and (3) of Theorem 6.1 though C may not be
a Harnack curve and Dw may not be a standard divisor. We conjecture that the spectral
transform is a birational map between the space of complex Ising coupling constants and
such spectral data.
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